About: Background: A hospital-level pandemic response involves anticipating local surge in healthcare needs. Methods: We developed a mechanistic transmission model to simulate a range of scenarios of COVID-19 spread in the Greater Toronto Area. We estimated healthcare needs against 2019 daily admissions using healthcare administrative data, and applied outputs to hospital-specific data on catchment, capacity, and baseline non-COVID admissions to estimate potential surge by day 90 at two hospitals (St. Michael’s Hospital [SMH] and St. Joseph’s Health Centre [SJHC]). We examined fast/large, default, and slow/small epidemics, wherein the default scenario (R0 2.4) resembled the early trajectory in the GTA. Results: Without further interventions, even a slow/small epidemic exceeded the city’s daily ICU capacity for patients without COVID-19. In a pessimistic default scenario, for SMH and SJHC to remain below their non-ICU bed capacity, they would need to reduce non-COVID inpatient care by 70% and 58% respectively. SMH would need to create 86 new ICU beds, while SJHC would need to reduce its ICU beds for non-COVID care by 72%. Uncertainty in local epidemiological features was more influential than uncertainty in clinical severity. If physical distancing reduces contacts by 20%, maximizing the diagnostic capacity or syndromic diagnoses at the community-level could avoid a surge at each hospital. Interpretation: As distribution of the city’s surge varies across hospitals over time, efforts are needed to plan and redistribute ICU care to where demand is expected. Hospital-level surge is based on community-level transmission, with community-level strategies key to mitigating each hospital’s surge. Keywords: COVID-19, pandemic preparedness, mathematical model, transmission model   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: A hospital-level pandemic response involves anticipating local surge in healthcare needs. Methods: We developed a mechanistic transmission model to simulate a range of scenarios of COVID-19 spread in the Greater Toronto Area. We estimated healthcare needs against 2019 daily admissions using healthcare administrative data, and applied outputs to hospital-specific data on catchment, capacity, and baseline non-COVID admissions to estimate potential surge by day 90 at two hospitals (St. Michael’s Hospital [SMH] and St. Joseph’s Health Centre [SJHC]). We examined fast/large, default, and slow/small epidemics, wherein the default scenario (R0 2.4) resembled the early trajectory in the GTA. Results: Without further interventions, even a slow/small epidemic exceeded the city’s daily ICU capacity for patients without COVID-19. In a pessimistic default scenario, for SMH and SJHC to remain below their non-ICU bed capacity, they would need to reduce non-COVID inpatient care by 70% and 58% respectively. SMH would need to create 86 new ICU beds, while SJHC would need to reduce its ICU beds for non-COVID care by 72%. Uncertainty in local epidemiological features was more influential than uncertainty in clinical severity. If physical distancing reduces contacts by 20%, maximizing the diagnostic capacity or syndromic diagnoses at the community-level could avoid a surge at each hospital. Interpretation: As distribution of the city’s surge varies across hospitals over time, efforts are needed to plan and redistribute ICU care to where demand is expected. Hospital-level surge is based on community-level transmission, with community-level strategies key to mitigating each hospital’s surge. Keywords: COVID-19, pandemic preparedness, mathematical model, transmission model
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software