About: Background. To inform planning for an influenza pandemic, we estimated US demand for N95 filtering facepiece respirators (respirators) by healthcare and emergency services personnel and need for surgical masks by pandemic patients seeking care. Methods. We used a spreadsheet-based model to estimate demand for 3 scenarios of respirator use: base case (usage approximately follows epidemic curve), intermediate demand (usage rises to epidemic peak and then remains constant), and maximum demand (all healthcare workers use respirators from pandemic onset). We assumed that in the base case scenario, up to 16 respirators would be required per day per intensive care unit patient and 8 per day per general ward patient. Outpatient healthcare workers and emergency services personnel would require 4 respirators per day. Patients would require 1.2 surgical masks per day. Results and Conclusions. Assuming that 20% to 30% of the population would become ill, 1.7 to 3.5 billion respirators would be needed in the base case scenario, 2.6 to 4.3 billion in the intermediate demand scenario, and up to 7.3 billion in the maximum demand scenario (for all scenarios, between 0.1 and 0.4 billion surgical masks would be required for patients). For pandemics with a lower attack rate and fewer cases (eg, 2009-like pandemic), the number of respirators needed would be higher because the pandemic would have longer duration. Providing these numbers of respirators and surgical masks represents a logistic challenge for US public health agencies. Public health officials must urgently consider alternative use strategies for respirators and surgical masks during a pandemic that may vary from current practices.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background. To inform planning for an influenza pandemic, we estimated US demand for N95 filtering facepiece respirators (respirators) by healthcare and emergency services personnel and need for surgical masks by pandemic patients seeking care. Methods. We used a spreadsheet-based model to estimate demand for 3 scenarios of respirator use: base case (usage approximately follows epidemic curve), intermediate demand (usage rises to epidemic peak and then remains constant), and maximum demand (all healthcare workers use respirators from pandemic onset). We assumed that in the base case scenario, up to 16 respirators would be required per day per intensive care unit patient and 8 per day per general ward patient. Outpatient healthcare workers and emergency services personnel would require 4 respirators per day. Patients would require 1.2 surgical masks per day. Results and Conclusions. Assuming that 20% to 30% of the population would become ill, 1.7 to 3.5 billion respirators would be needed in the base case scenario, 2.6 to 4.3 billion in the intermediate demand scenario, and up to 7.3 billion in the maximum demand scenario (for all scenarios, between 0.1 and 0.4 billion surgical masks would be required for patients). For pandemics with a lower attack rate and fewer cases (eg, 2009-like pandemic), the number of respirators needed would be higher because the pandemic would have longer duration. Providing these numbers of respirators and surgical masks represents a logistic challenge for US public health agencies. Public health officials must urgently consider alternative use strategies for respirators and surgical masks during a pandemic that may vary from current practices.
Subject
  • Prevention
  • Influenza pandemics
  • Influenza A virus subtype H5N1
  • Respirators
  • Medical hygiene
  • Occupational safety and health
  • 1972 introductions
  • East Asian culture
  • Japanese culture
  • Medical masks
  • Medical devices
  • Emergency services
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software