About: Vaccines for 17 viral pathogens have been licensed for use in humans. Previously, two critical biological parameters of the pathogen and the host–pathogen interaction—incubation period and broadly protective, relative immunogenicity—were proposed to account for much of the past successes in vaccine development, and to be useful in estimating the “certainty of success” of developing an effective vaccine for viral pathogens for which a vaccine currently does not exist. In considering the “certainty of success” in development of human coronavirus vaccines, particularly SARS-CoV-2, a third, related critical parameter is proposed—infectious inoculum intensity, at an individual-level, and force of infection, at a population-level. Reducing the infectious inoculum intensity (and force of infection, at a population-level) is predicted to lengthen the incubation period, which in turn is predicted to reduce the severity of illness, and increase the opportunity for an anamnestic response upon exposure to the circulating virus. Similarly, successfully implementing individual- and population-based behaviors that reduce the infectious inoculum intensity and force of infection, respectively, while testing and deploying COVID-19 vaccines is predicted to increase the “certainty of success” of demonstrating vaccine efficacy and controlling SARS-CoV-2 infection, disease, death, and the pandemic itself.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Vaccines for 17 viral pathogens have been licensed for use in humans. Previously, two critical biological parameters of the pathogen and the host–pathogen interaction—incubation period and broadly protective, relative immunogenicity—were proposed to account for much of the past successes in vaccine development, and to be useful in estimating the “certainty of success” of developing an effective vaccine for viral pathogens for which a vaccine currently does not exist. In considering the “certainty of success” in development of human coronavirus vaccines, particularly SARS-CoV-2, a third, related critical parameter is proposed—infectious inoculum intensity, at an individual-level, and force of infection, at a population-level. Reducing the infectious inoculum intensity (and force of infection, at a population-level) is predicted to lengthen the incubation period, which in turn is predicted to reduce the severity of illness, and increase the opportunity for an anamnestic response upon exposure to the circulating virus. Similarly, successfully implementing individual- and population-based behaviors that reduce the infectious inoculum intensity and force of infection, respectively, while testing and deploying COVID-19 vaccines is predicted to increase the “certainty of success” of demonstrating vaccine efficacy and controlling SARS-CoV-2 infection, disease, death, and the pandemic itself.
subject
  • Virology
  • Immunology
  • Vaccination
  • Immune system
  • Epidemiology
  • Vaccines
  • Infectious diseases
  • Biological interactions
  • 18th-century inventions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software