AttributesValues
type
value
  • Session-based future page prediction is important for online web experiences to understand user behavior, pre-fetching future content, and for creating future experiences for users. While webpages visited by the user in the current session capture the users’ local preferences, in this work, we show how the global content preferences at the given instant can assist in this task. We present DRS-LaG, a Deep Reinforcement Learning System, based on Local and Global preferences. We capture these global content preferences by tracking a key analytics KPI, the number of views. The problem is formulated using an agent which predicts the next page to be visited by the user, based on the historic webpage content and analytics. In an offline setting, we show how the model can be used for predicting the next webpage that the user visits. The online evaluation shows how this framework can be deployed on a website for dynamic adaptation of web experiences, based on both local and global preferences.
subject
  • Machine learning algorithms
  • Machine learning
  • Deep learning
  • Reinforcement learning
  • Metrics
  • Human behavior
  • Artificial intelligence
  • Performance management
  • Business intelligence
  • Computer security
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software