About: Effectively identifying COVID-19 patients using non-PCR clinical data is critical for the optimal clinical outcomes. Currently, there is a lack of comprehensive understanding of various biomedical features and appropriate technical approaches to accurately detecting COVID-19 patients. In this study, we recruited 214 confirmed COVID-19 patients in non-severe (NS) and 148 in severe (S) clinical type, 198 non-infected healthy (H) participants and 129 non-COVID viral pneumonia (V) patients. The participants' clinical information (23 features), lab testing results (10 features), and thoracic CT scans upon admission were acquired as three input feature modalities. To enable late fusion of multimodality data, we developed a deep learning model to extract a 10-feature high-level representation of the CT scans. Exploratory analyses showed substantial differences of all features among the four classes. Three machine learning models (k-nearest neighbor kNN, random forest RF, and support vector machine SVM) were developed based on the 43 features combined from all three modalities to differentiate four classes (NS, S, V, and H) at once. All three models had high accuracy to differentiate the overall four classes (95.4%-97.7%) and each individual class (90.6%-99.9%). Multimodal features provided substantial performance gain from using any single feature modality. Compared to existing binary classification benchmarks often focusing on single feature modality, this study provided a novel and effective breakthrough for clinical applications. Findings and the analytical workflow can be used as clinical decision support for current COVID-19 and other clinical applications with high-dimensional multimodal biomedical features.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Effectively identifying COVID-19 patients using non-PCR clinical data is critical for the optimal clinical outcomes. Currently, there is a lack of comprehensive understanding of various biomedical features and appropriate technical approaches to accurately detecting COVID-19 patients. In this study, we recruited 214 confirmed COVID-19 patients in non-severe (NS) and 148 in severe (S) clinical type, 198 non-infected healthy (H) participants and 129 non-COVID viral pneumonia (V) patients. The participants' clinical information (23 features), lab testing results (10 features), and thoracic CT scans upon admission were acquired as three input feature modalities. To enable late fusion of multimodality data, we developed a deep learning model to extract a 10-feature high-level representation of the CT scans. Exploratory analyses showed substantial differences of all features among the four classes. Three machine learning models (k-nearest neighbor kNN, random forest RF, and support vector machine SVM) were developed based on the 43 features combined from all three modalities to differentiate four classes (NS, S, V, and H) at once. All three models had high accuracy to differentiate the overall four classes (95.4%-97.7%) and each individual class (90.6%-99.9%). Multimodal features provided substantial performance gain from using any single feature modality. Compared to existing binary classification benchmarks often focusing on single feature modality, this study provided a novel and effective breakthrough for clinical applications. Findings and the analytical workflow can be used as clinical decision support for current COVID-19 and other clinical applications with high-dimensional multimodal biomedical features.
Subject
  • Clinical research
  • Polaris Music Prize-winning albums
  • XL Recordings albums
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software