About: CD147 is a widely expressed plasma membrane protein that has been implicated in a variety of physiological and pathological activities. It is best known for its ability to function as extracellular matrix metalloproteinase inducer (hence the other name for this protein, EMMPRIN), but has also been shown to regulate lymphocyte responsiveness, monocarboxylate transporter expression and spermatogenesis. These functions reflect multiple interacting partners of CD147. Among these CD147-interacting proteins cyclophilins represent a particularly interesting class, both in terms of structural considerations and potential medical implications. CD147 has been shown to function as a signalling receptor for extracellular cyclophilins A and B and to mediate chemotactic activity of cyclophilins towards a variety of immune cells. Recent studies using in vitro and in vivo models have demonstrated a role for cyclophilin–CD147 interactions in the regulation of inflammatory responses in a number of diseases, including acute lung inflammation, rheumatoid arthritis and cardiovascular disease. Agents targeting either CD147 or cyclophilin activity showed significant anti-inflammatory effects in experimental models, suggesting CD147–cyclophilin interactions may be a good target for new anti-inflammatory therapeutics. Here, we review the recent literature on different aspects of cyclophilin–CD147 interactions and their role in inflammatory diseases.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • CD147 is a widely expressed plasma membrane protein that has been implicated in a variety of physiological and pathological activities. It is best known for its ability to function as extracellular matrix metalloproteinase inducer (hence the other name for this protein, EMMPRIN), but has also been shown to regulate lymphocyte responsiveness, monocarboxylate transporter expression and spermatogenesis. These functions reflect multiple interacting partners of CD147. Among these CD147-interacting proteins cyclophilins represent a particularly interesting class, both in terms of structural considerations and potential medical implications. CD147 has been shown to function as a signalling receptor for extracellular cyclophilins A and B and to mediate chemotactic activity of cyclophilins towards a variety of immune cells. Recent studies using in vitro and in vivo models have demonstrated a role for cyclophilin–CD147 interactions in the regulation of inflammatory responses in a number of diseases, including acute lung inflammation, rheumatoid arthritis and cardiovascular disease. Agents targeting either CD147 or cyclophilin activity showed significant anti-inflammatory effects in experimental models, suggesting CD147–cyclophilin interactions may be a good target for new anti-inflammatory therapeutics. Here, we review the recent literature on different aspects of cyclophilin–CD147 interactions and their role in inflammatory diseases.
Subject
  • Blood
  • Hematology
  • Organelles
  • Complement system
  • Transfusion medicine
  • Blood antigen systems
  • Clusters of differentiation
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software