AttributesValues
type
value
  • In response to SARS-CoV infection, neutralizing antibodies are generated against the Spike (S) protein. Determination of the active regions that allow viral escape from neutralization would enable the use of these antibodies for future passive immunotherapy. We immunized mice with UV-inactivated SARS-CoV to generate three anti-S monoclonal antibodies, and established several neutralization escape mutants with S protein. We identified several amino acid substitutions, including Y442F and V601G in the S1 domain and D757N and A834V in the S2 region. In the presence of each neutralizing antibody, double mutants with substitutions in both domains exhibited a greater growth advantage than those with only one substitution. Importantly, combining two monoclonal antibodies that target different epitopes effected almost complete suppression of wild type virus replication. Thus, for effective passive immunotherapy, it is important to use neutralizing antibodies that recognize both the S1 and S2 regions.
subject
  • Virology
  • Immunology
  • Immune system
  • Antibodies
  • Electromagnetic spectrum
  • Reagents for biochemistry
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software