About: Aim Anthropogenic climate change is expected to result in the complete loss of glaciers from the high mountains of tropical Africa, with profound impacts on the hydrology and ecology of unique tropical cold‐water lakes located downstream from them. This study examines the biodiversity of Chironomidae (Insecta: Diptera) communities in these scarce Afroalpine lake systems, in order to determine their uniqueness in relation to lowland African lakes and alpine lakes in temperate regions, and to evaluate the potential of Afroalpine Chironomidae as biological indicators to monitor future changes in the ecological integrity of their habitat. Location Mount Kenya (Kenya) and Rwenzori Mountains (Uganda). Methods The species composition of Afroalpine chironomid communities was assessed using recent larval death assemblages extracted from the surface sediments of 11 high‐mountain lakes between 2900 and 4575 m. Results were compared with similar faunal data from 68 East African lakes at low and middle elevation (750–2760 m), and with literature records of Chironomidae species distribution in sub‐Saharan Africa, the Palaearctic region and elsewhere. All recovered taxa were fully described and illustrated. Results The 11‐lake analysis yielded 1744 subfossil chironomid larvae belonging to 16 distinct taxa of full‐grown larvae, and three taxa of less differentiated juveniles. Eleven of these 16 are not known to occur in African lakes at lower elevation, and eight taxa (or 50% of total species richness) appear restricted to the specific habitat of cold lakes above 3900 m, where night‐time freezing is frequent year‐round. The faunal transition zone coincides broadly with the Ericaceous zone of terrestrial vegetation (c. 3000–4000 m). Snowline depression during the Quaternary ice ages must have facilitated dispersion of cold‐stenothermous species among the high mountains of equatorial East Africa, but less so from or to the Palaearctic region via the Ethiopian highlands. Main conclusions Chironomid communities in glacier‐fed lakes on Africa's highest mountains are highly distinct from those of lowland African lakes, and potentially unique on a continental scale. By virtue of excellent preservation and their spatial and temporal integration of local community dynamics, chironomid larval death assemblages extracted from surface sediments are powerful biological indicators for monitoring the hydrological and ecological changes associated with the current retreat and loss of Africa's glaciers.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Aim Anthropogenic climate change is expected to result in the complete loss of glaciers from the high mountains of tropical Africa, with profound impacts on the hydrology and ecology of unique tropical cold‐water lakes located downstream from them. This study examines the biodiversity of Chironomidae (Insecta: Diptera) communities in these scarce Afroalpine lake systems, in order to determine their uniqueness in relation to lowland African lakes and alpine lakes in temperate regions, and to evaluate the potential of Afroalpine Chironomidae as biological indicators to monitor future changes in the ecological integrity of their habitat. Location Mount Kenya (Kenya) and Rwenzori Mountains (Uganda). Methods The species composition of Afroalpine chironomid communities was assessed using recent larval death assemblages extracted from the surface sediments of 11 high‐mountain lakes between 2900 and 4575 m. Results were compared with similar faunal data from 68 East African lakes at low and middle elevation (750–2760 m), and with literature records of Chironomidae species distribution in sub‐Saharan Africa, the Palaearctic region and elsewhere. All recovered taxa were fully described and illustrated. Results The 11‐lake analysis yielded 1744 subfossil chironomid larvae belonging to 16 distinct taxa of full‐grown larvae, and three taxa of less differentiated juveniles. Eleven of these 16 are not known to occur in African lakes at lower elevation, and eight taxa (or 50% of total species richness) appear restricted to the specific habitat of cold lakes above 3900 m, where night‐time freezing is frequent year‐round. The faunal transition zone coincides broadly with the Ericaceous zone of terrestrial vegetation (c. 3000–4000 m). Snowline depression during the Quaternary ice ages must have facilitated dispersion of cold‐stenothermous species among the high mountains of equatorial East Africa, but less so from or to the Palaearctic region via the Ethiopian highlands. Main conclusions Chironomid communities in glacier‐fed lakes on Africa's highest mountains are highly distinct from those of lowland African lakes, and potentially unique on a continental scale. By virtue of excellent preservation and their spatial and temporal integration of local community dynamics, chironomid larval death assemblages extracted from surface sediments are powerful biological indicators for monitoring the hydrological and ecological changes associated with the current retreat and loss of Africa's glaciers.
subject
  • Conservation biology
  • Hydraulic engineering
  • Bodies of ice
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software