About: Abstract Following infection of haplotype defined NIH-miniswine with virulent transmissible gastroenteritis coronavirus (TGEV), isolated mesenteric lymph node CD4+ T-cells mounted a specific proliferative response against infectious or inactivated purified virus in secondary in vitro stimulation. A specific, dose-dependent response to the three major recombinant viral proteins: spike (S), membrane (M), and nucleoprotein (N), purified by affinity chromatography, was characterized. Induction of in vitro antibody synthesis was analyzed. The purified recombinant viral proteins induced the in vitro synthesis of neutralizing TGEV-specific antibodies when porcine TGEV-immune cells were stimulated with each of the combinations made with two of the major structural proteins: S+N, S+M, and to a minor extent with M+N, but not by the individual proteins. S-protein was dissociated from purified virus using NP-40 detergent and then micellar S-protein oligomers (S-rosettes) were formed by removing the detergent. These occurred preferentially by the association of more than 10 S-protein trimmers. These S-rosettes in collaboration with either N or M-proteins elicited TGEV-specific antibodies with titers up to 84 and 60%, respectively, of those induced by the whole virus. N-protein could be partially substituted by a 15-mer peptide that represents a T helper epitope previously identified in N-protein (Antón et al. (1995)). These results indicate that the induction of high levels of TGEV-specific antibodies requires stimulation by at least two viral proteins, and that optimum responses are induced by a combination of S-rosettes and the nucleoprotein.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Following infection of haplotype defined NIH-miniswine with virulent transmissible gastroenteritis coronavirus (TGEV), isolated mesenteric lymph node CD4+ T-cells mounted a specific proliferative response against infectious or inactivated purified virus in secondary in vitro stimulation. A specific, dose-dependent response to the three major recombinant viral proteins: spike (S), membrane (M), and nucleoprotein (N), purified by affinity chromatography, was characterized. Induction of in vitro antibody synthesis was analyzed. The purified recombinant viral proteins induced the in vitro synthesis of neutralizing TGEV-specific antibodies when porcine TGEV-immune cells were stimulated with each of the combinations made with two of the major structural proteins: S+N, S+M, and to a minor extent with M+N, but not by the individual proteins. S-protein was dissociated from purified virus using NP-40 detergent and then micellar S-protein oligomers (S-rosettes) were formed by removing the detergent. These occurred preferentially by the association of more than 10 S-protein trimmers. These S-rosettes in collaboration with either N or M-proteins elicited TGEV-specific antibodies with titers up to 84 and 60%, respectively, of those induced by the whole virus. N-protein could be partially substituted by a 15-mer peptide that represents a T helper epitope previously identified in N-protein (Antón et al. (1995)). These results indicate that the induction of high levels of TGEV-specific antibodies requires stimulation by at least two viral proteins, and that optimum responses are induced by a combination of S-rosettes and the nucleoprotein.
Subject
  • Virology
  • Immunology
  • Proteins
  • Medical research institutes in the United States
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software