About: Abstract Viral envelope glycoproteins are oligomeric and the quaternary structure is critical for their membrane fusion activity. Typically the transmembrane glycoproteins of class I fusion proteins contain the oligomerization domains and the surface glycoproteins (SU) are monomeric. However, it has been previously demonstrated [J. Biol. Chem. 277 (2002) 19727] that the SU of a murine hepatitis coronavirus (MHV) forms dimers, the dimerization domain overlaps the receptor-binding domain (RBD) and that this dimeric state is important for binding to receptor molecules that initiates entry into cells. We have previously expressed various soluble fragments of the SARS-CoV SU and identified stably folded fragments (residues 272–537) that contain the RBD [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Here, we further characterize these and other fragments in an attempt to identify possible dimerization domains and their role for membrane fusion. We demonstrate that the SU and a shorter 260-amino acid N-terminal fragment (residues 17–276), which folds independently, form dimers. In contrast to the previously characterized MHV SU dimerization, this fragment is upstream and distinct from the RBD. Its deletion abolished S-mediated cell membrane fusion but retained the SU-receptor-binding function indicating the possibility for a role in post-receptor binding steps of the virus entry mechanism. Interestingly, the whole soluble S ectodomain (Se) that contains the dimerization domain but not the transmembrane domain and the cytoplasmic tail forms trimers suggesting the existence of a trimerization domain in the TM subunit in its prefusion state that may lead to a conformation unfavorable for formation of higher-order multimeric structures. These results demonstrate the existence of SU dimers and Se trimers, and indicate the possibility for an unknown mechanism of their role in entry. They also further characterize the S-mediated membrane fusion and could be important for understanding the mechanisms of virus entry, and in the development of therapeutics and vaccines.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Viral envelope glycoproteins are oligomeric and the quaternary structure is critical for their membrane fusion activity. Typically the transmembrane glycoproteins of class I fusion proteins contain the oligomerization domains and the surface glycoproteins (SU) are monomeric. However, it has been previously demonstrated [J. Biol. Chem. 277 (2002) 19727] that the SU of a murine hepatitis coronavirus (MHV) forms dimers, the dimerization domain overlaps the receptor-binding domain (RBD) and that this dimeric state is important for binding to receptor molecules that initiates entry into cells. We have previously expressed various soluble fragments of the SARS-CoV SU and identified stably folded fragments (residues 272–537) that contain the RBD [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Here, we further characterize these and other fragments in an attempt to identify possible dimerization domains and their role for membrane fusion. We demonstrate that the SU and a shorter 260-amino acid N-terminal fragment (residues 17–276), which folds independently, form dimers. In contrast to the previously characterized MHV SU dimerization, this fragment is upstream and distinct from the RBD. Its deletion abolished S-mediated cell membrane fusion but retained the SU-receptor-binding function indicating the possibility for a role in post-receptor binding steps of the virus entry mechanism. Interestingly, the whole soluble S ectodomain (Se) that contains the dimerization domain but not the transmembrane domain and the cytoplasmic tail forms trimers suggesting the existence of a trimerization domain in the TM subunit in its prefusion state that may lead to a conformation unfavorable for formation of higher-order multimeric structures. These results demonstrate the existence of SU dimers and Se trimers, and indicate the possibility for an unknown mechanism of their role in entry. They also further characterize the S-mediated membrane fusion and could be important for understanding the mechanisms of virus entry, and in the development of therapeutics and vaccines.
Subject
  • Virology
  • Protein structure
  • Membrane biology
  • Musical groups from Mexico City
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software