AttributesValues
type
value
  • Metabolite-responsive RNA pseudoknots derived from prokaryotic riboswitches have been shown to stimulate −1 programmed ribosomal frameshifting (PRF), suggesting −1 PRF as a promising gene expression platform to extend riboswitch applications in higher eukaryotes. However, its general application has been hampered by difficulty in identifying a specific ligand-responsive pseudoknot that also functions as a ligand-dependent -1 PRF stimulator. We addressed this problem by using the −1 PRF stimulation pseudoknot of SARS-CoV (SARS-PK) to build a ligand-dependent −1 PRF stimulator. In particular, the extra stem of SARS-PK was replaced by an RNA aptamer of theophylline and designed to couple theophylline binding with the stimulation of −1 PRF. Conformational and functional analyses indicate that the engineered theophylline-responsive RNA functions as a mammalian riboswitch with robust theophylline-dependent −1 PRF stimulation activity in a stable human 293T cell-line. Thus, RNA–ligand interaction repertoire provided by in vitro selection becomes accessible to ligand-specific −1 PRF stimulator engineering using SARS-PK as the scaffold for synthetic biology application.
Subject
  • RNA
  • Metabolism
  • RNA splicing
  • Phosphodiesterase inhibitors
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software