About: To reduce the training time of large-scale Deep Neural Networks (DNNs), Deep Learning (DL) scientists have started to explore parallelization strategies like data-parallelism, model-parallelism, and hybrid-parallelism. While data-parallelism has been extensively studied and developed, several problems exist in realizing model-parallelism and hybrid-parallelism efficiently. Four major problems we focus on are: 1) defining a notion of a distributed model across processes, 2) implementing forward/back-propagation across process boundaries that requires explicit communication, 3) obtaining parallel speedup on an inherently sequential task, and 4) achieving scalability without losing out on a model’s accuracy. To address these problems, we create HyPar-Flow—a model-size and model-type agnostic, scalable, practical, and user-transparent system for hybrid-parallel training by exploiting MPI, Keras, and TensorFlow. HyPar-Flow provides a single API that can be used to perform data, model, and hybrid parallel training of any Keras model at scale. We create an internal distributed representation of the user-provided Keras model, utilize TF’s Eager execution features for distributed forward/back-propagation across processes, exploit pipelining to improve performance and leverage efficient MPI primitives for scalable communication. Between model partitions, we use send and recv to exchange layer-data/partial-errors while allreduce is used to accumulate/average gradients across model replicas. Beyond the design and implementation of HyPar-Flow, we also provide comprehensive correctness and performance results on three state-of-the-art HPC systems including TACC Frontera (#5 on Top500.org). For ResNet-1001, an ultra-deep model, HyPar-Flow provides: 1) Up to 1.6[Formula: see text] speedup over Horovod-based data-parallel training, 2) 110[Formula: see text] speedup over single-node on 128 Stampede2 nodes, and 3) 481[Formula: see text] speedup over single-node on 512 Frontera nodes.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • To reduce the training time of large-scale Deep Neural Networks (DNNs), Deep Learning (DL) scientists have started to explore parallelization strategies like data-parallelism, model-parallelism, and hybrid-parallelism. While data-parallelism has been extensively studied and developed, several problems exist in realizing model-parallelism and hybrid-parallelism efficiently. Four major problems we focus on are: 1) defining a notion of a distributed model across processes, 2) implementing forward/back-propagation across process boundaries that requires explicit communication, 3) obtaining parallel speedup on an inherently sequential task, and 4) achieving scalability without losing out on a model’s accuracy. To address these problems, we create HyPar-Flow—a model-size and model-type agnostic, scalable, practical, and user-transparent system for hybrid-parallel training by exploiting MPI, Keras, and TensorFlow. HyPar-Flow provides a single API that can be used to perform data, model, and hybrid parallel training of any Keras model at scale. We create an internal distributed representation of the user-provided Keras model, utilize TF’s Eager execution features for distributed forward/back-propagation across processes, exploit pipelining to improve performance and leverage efficient MPI primitives for scalable communication. Between model partitions, we use send and recv to exchange layer-data/partial-errors while allreduce is used to accumulate/average gradients across model replicas. Beyond the design and implementation of HyPar-Flow, we also provide comprehensive correctness and performance results on three state-of-the-art HPC systems including TACC Frontera (#5 on Top500.org). For ResNet-1001, an ultra-deep model, HyPar-Flow provides: 1) Up to 1.6[Formula: see text] speedup over Horovod-based data-parallel training, 2) 110[Formula: see text] speedup over single-node on 128 Stampede2 nodes, and 3) 481[Formula: see text] speedup over single-node on 512 Frontera nodes.
subject
  • Deep learning
  • Parallel computing
  • Philosophy of religion
  • Artificial neural networks
  • Software quality
  • Concurrent computing
  • Distributed computing
  • Applied machine learning
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software