About: We are currently facing a highly critical case of a world-wide pandemic. The novel coronavirus (SARS-CoV-2, a.k.a. COVID-19) has proved to be extremely contagious and the original outbreak from Asia has now spread to all continents. This situation will fruitfully profit from the study in regards of the spread of the virus, assessing effective countermeasures to weight the impact of the adopted strategies. The standard Susceptible-Infectious-Recovered (SIR) model is a very successful and widely used mathematical model for predicting the spread of an epidemic. We adopt the SIR model on a random network and extend the model to include control strategies {/em lockdown} and {/em testing} -- two often employed mitigation strategies. The ability of these strategies in controlling the pandemic spread is investigated by varying the effectiveness with which they are implemented. The possibility of a second outbreak is evaluated in detail after the mitigation strategies are withdrawn. We notice that, in any case, a sudden interruption of such mitigation strategies will likely induce a resurgence of a second outbreak, whose peak will be correlated to the number of susceptible individuals. In fact, we find that a population will remain vulnerable to the infection until the herd immunity is achieved. We also test our model with real statistics and information on the epidemic spread in South Korea, Germany, and New York and find a remarkable agreement with the simulation data.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • We are currently facing a highly critical case of a world-wide pandemic. The novel coronavirus (SARS-CoV-2, a.k.a. COVID-19) has proved to be extremely contagious and the original outbreak from Asia has now spread to all continents. This situation will fruitfully profit from the study in regards of the spread of the virus, assessing effective countermeasures to weight the impact of the adopted strategies. The standard Susceptible-Infectious-Recovered (SIR) model is a very successful and widely used mathematical model for predicting the spread of an epidemic. We adopt the SIR model on a random network and extend the model to include control strategies {/em lockdown} and {/em testing} -- two often employed mitigation strategies. The ability of these strategies in controlling the pandemic spread is investigated by varying the effectiveness with which they are implemented. The possibility of a second outbreak is evaluated in detail after the mitigation strategies are withdrawn. We notice that, in any case, a sudden interruption of such mitigation strategies will likely induce a resurgence of a second outbreak, whose peak will be correlated to the number of susceptible individuals. In fact, we find that a population will remain vulnerable to the infection until the herd immunity is achieved. We also test our model with real statistics and information on the epidemic spread in South Korea, Germany, and New York and find a remarkable agreement with the simulation data.
Subject
  • Virology
  • Epidemiology
  • COVID-19
  • Member states of NATO
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software