About: Machine learning-based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicenter study   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
has title
  • Machine learning-based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicenter study
Creator
  • Yang, Jie
  • Xu, Dan
  • Huang, Shan
  • Pan, Hongqiu
  • Qi, Xiaolong
  • Liu, Chuan
  • Zhang, Hongguang
  • Wang, Jitao
  • Yue, Hongmei
  • Analysis, Shengqiang
  • Huang, Huihong
  • Ji, Jiansong
  • Jiang, Zicheng
  • Ju,
  • Ju, Shenghong
  • Lei, Junqiang
  • Ma, Baoyi
  • Meng, Xiangpan
  • Or, Shenghong
  • Shao, Chuxiao
  • Yu, Qian
  • Wang, Yuancheng
  • Xie, Guanghang
  • Zou, Shengqiang
Source
  • MedRxiv
abstract
has issue date
bibo:doi
  • 10.1101/2020.02.29.20029603
has license
  • medrxiv
sha1sum (hex)
  • b8bb4db131a25b1bbb30d4205b16dc9ef988d22f
schema:url
resource representing a document's title
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software