About: With the global coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for risk stratification tools to support prevention and treatment decisions. The Centers for Disease Control and Prevention (CDC) listed several criteria that define high-risk individuals, but multivariable prediction models may allow for a more accurate and granular risk evaluation. In the early days of the pandemic, when individual level data required for training prediction models was not available, a large healthcare organization developed a prediction model for supporting its COVID-19 policy using a hybrid strategy. The model was constructed on a baseline predictor to rank patients according to their risk for severe respiratory infection or sepsis (trained using over one-million patient records) and was then post-processed to calibrate the predictions to reported COVID-19 case fatality rates. Since its deployment in mid-March, this predictor was integrated into many decision-processes in the organization that involved allocating limited resources. With the accumulation of enough COVID-19 patients, the predictor was validated for its accuracy in predicting COVID-19 mortality among all COVID-19 cases in the organization (3,176, 3.1% death rate). The predictor was found to have good discrimination, with an area under the receiver-operating characteristics curve of 0.942. Calibration was also good, with a marked improvement compared to the calibration of the baseline model when evaluated for the COVID-19 mortality outcome. While the CDC criteria identify 41% of the population as high-risk with a resulting sensitivity of 97%, a 5% absolute risk cutoff by the model tags only 14% to be at high-risk while still achieving a sensitivity of 90%. To summarize, we found that even in the midst of a pandemic, shrouded in epidemiologic %22fog of war%22 and with no individual level data, it was possible to provide a useful predictor with good discrimination and calibration.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • With the global coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for risk stratification tools to support prevention and treatment decisions. The Centers for Disease Control and Prevention (CDC) listed several criteria that define high-risk individuals, but multivariable prediction models may allow for a more accurate and granular risk evaluation. In the early days of the pandemic, when individual level data required for training prediction models was not available, a large healthcare organization developed a prediction model for supporting its COVID-19 policy using a hybrid strategy. The model was constructed on a baseline predictor to rank patients according to their risk for severe respiratory infection or sepsis (trained using over one-million patient records) and was then post-processed to calibrate the predictions to reported COVID-19 case fatality rates. Since its deployment in mid-March, this predictor was integrated into many decision-processes in the organization that involved allocating limited resources. With the accumulation of enough COVID-19 patients, the predictor was validated for its accuracy in predicting COVID-19 mortality among all COVID-19 cases in the organization (3,176, 3.1% death rate). The predictor was found to have good discrimination, with an area under the receiver-operating characteristics curve of 0.942. Calibration was also good, with a marked improvement compared to the calibration of the baseline model when evaluated for the COVID-19 mortality outcome. While the CDC criteria identify 41% of the population as high-risk with a resulting sensitivity of 97%, a 5% absolute risk cutoff by the model tags only 14% to be at high-risk while still achieving a sensitivity of 90%. To summarize, we found that even in the midst of a pandemic, shrouded in epidemiologic %22fog of war%22 and with no individual level data, it was possible to provide a useful predictor with good discrimination and calibration.
subject
  • Zoonoses
  • Command and control
  • Viral respiratory tract infections
  • COVID-19
  • Primary care
  • Occupational safety and health
  • Safety engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software