About: The recent pandemic situation transpired due to coronavirus novel strain SARS-CoV-2 has become a global concern. This human coronavirus (HCov-19) has put the world on high alert as the numbers of confirmed cases are continuously increasing. The world is now fighting against this deadly virus and is leaving no stone unturned to find effective treatments through testing of various available drugs, including those effective against flu, malaria, etc. With an urgent need for the development of potential strategies, two recent studies from China using Mesenchymal Stem Cells (MSCs) to treat COVID-19 pneumonia have shed some light on a potential cure for the COVID-19 infected patients. However, MSCs, despite being used in various other clinical trials have always been questioned for their tendency to aggregate or form clumps in the injured or disease microenvironment. It has also been reported in various studies that exosomes secreted by these MSCs, contribute towards the cell’s biological and therapeutic efficacy. There have been reports evaluating the safety and feasibility of these exosomes in various lung diseases, thereby proposing them as a cell-free therapeutic agent. Also, attractive features like cell targeting, low-immunogenicity, safety, and high biocompatibility distinguish these exosomes from other synthetic nano-vesicles and thus potentiate their role as a drug delivery nano-platform. Building upon these observations, herein, efforts are made to give an overview of stem cell-derived exosomes as an appealing therapeutic agent and drug delivery nano-carrier. In this review, we briefly recapitulate the recent evidence and developments in understanding exosomes as a promising candidate for novel nano-intervention in the current pandemic scenario. Furthermore, this review will highlight and discuss mechanistic role of exosomes to combat severe lung pathological conditions. We have also attempted to dwell into the nano-formulation of exosomes for its better applicability, storage, and stability thereby conferring them as off the shelf therapeutic.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The recent pandemic situation transpired due to coronavirus novel strain SARS-CoV-2 has become a global concern. This human coronavirus (HCov-19) has put the world on high alert as the numbers of confirmed cases are continuously increasing. The world is now fighting against this deadly virus and is leaving no stone unturned to find effective treatments through testing of various available drugs, including those effective against flu, malaria, etc. With an urgent need for the development of potential strategies, two recent studies from China using Mesenchymal Stem Cells (MSCs) to treat COVID-19 pneumonia have shed some light on a potential cure for the COVID-19 infected patients. However, MSCs, despite being used in various other clinical trials have always been questioned for their tendency to aggregate or form clumps in the injured or disease microenvironment. It has also been reported in various studies that exosomes secreted by these MSCs, contribute towards the cell’s biological and therapeutic efficacy. There have been reports evaluating the safety and feasibility of these exosomes in various lung diseases, thereby proposing them as a cell-free therapeutic agent. Also, attractive features like cell targeting, low-immunogenicity, safety, and high biocompatibility distinguish these exosomes from other synthetic nano-vesicles and thus potentiate their role as a drug delivery nano-platform. Building upon these observations, herein, efforts are made to give an overview of stem cell-derived exosomes as an appealing therapeutic agent and drug delivery nano-carrier. In this review, we briefly recapitulate the recent evidence and developments in understanding exosomes as a promising candidate for novel nano-intervention in the current pandemic scenario. Furthermore, this review will highlight and discuss mechanistic role of exosomes to combat severe lung pathological conditions. We have also attempted to dwell into the nano-formulation of exosomes for its better applicability, storage, and stability thereby conferring them as off the shelf therapeutic.
subject
  • Virology
  • Plasmodium
  • Stem cells
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software