About: The main form of COVID-19 transmission is via “oral-respiratory droplet contamination” (droplet: very small drop of liquid) produced when individuals talk, sneeze, or cough. In hospitals, health-care workers wear facemasks as a minimum medical “droplet precaution” to protect themselves. Due to the shortage of masks during the pandemic, priority is given to hospitals for their distribution. As a result, the availability/use of medical masks is discouraged for the public. However, for asymptomatic individuals, not wearing masks in public could easily cause the spread of COVID-19. The prevention of “environmental droplet contamination” (EnvDC) from coughing/sneezing/speech is fundamental to reducing transmission. As an immediate solution to promote “public droplet safety,” we assessed household textiles to quantify their potential as effective environmental droplet barriers (EDBs). The synchronized implementation of a universal “community droplet reduction solution” is discussed as a model against COVID-19. Using a bacterial-suspension spray simulation model of droplet ejection (mimicking a sneeze), we quantified the extent by which widely available clothing fabrics reduce the dispersion of droplets onto surfaces within 1.8 m, the minimum distance recommended for COVID-19 “social distancing.” All textiles reduced the number of droplets reaching surfaces, restricting their dispersion to <30 cm, when used as single layers. When used as double-layers, textiles were as effective as medical mask/surgical-cloth materials, reducing droplet dispersion to <10 cm, and the area of circumferential contamination to ~0.3%. The synchronized implementation of EDBs as a “community droplet reduction solution” (i.e., face covers/scarfs/masks and surface covers) will reduce COVID-19 EnvDC and thus the risk of transmitting/acquiring COVID-19.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The main form of COVID-19 transmission is via “oral-respiratory droplet contamination” (droplet: very small drop of liquid) produced when individuals talk, sneeze, or cough. In hospitals, health-care workers wear facemasks as a minimum medical “droplet precaution” to protect themselves. Due to the shortage of masks during the pandemic, priority is given to hospitals for their distribution. As a result, the availability/use of medical masks is discouraged for the public. However, for asymptomatic individuals, not wearing masks in public could easily cause the spread of COVID-19. The prevention of “environmental droplet contamination” (EnvDC) from coughing/sneezing/speech is fundamental to reducing transmission. As an immediate solution to promote “public droplet safety,” we assessed household textiles to quantify their potential as effective environmental droplet barriers (EDBs). The synchronized implementation of a universal “community droplet reduction solution” is discussed as a model against COVID-19. Using a bacterial-suspension spray simulation model of droplet ejection (mimicking a sneeze), we quantified the extent by which widely available clothing fabrics reduce the dispersion of droplets onto surfaces within 1.8 m, the minimum distance recommended for COVID-19 “social distancing.” All textiles reduced the number of droplets reaching surfaces, restricting their dispersion to <30 cm, when used as single layers. When used as double-layers, textiles were as effective as medical mask/surgical-cloth materials, reducing droplet dispersion to <10 cm, and the area of circumferential contamination to ~0.3%. The synchronized implementation of EDBs as a “community droplet reduction solution” (i.e., face covers/scarfs/masks and surface covers) will reduce COVID-19 EnvDC and thus the risk of transmitting/acquiring COVID-19.
subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Primary care
  • Occupational safety and health
  • Reflexes
  • Infectious diseases by mode of transmission
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software