About: The appearance of the novel betacoronavirus SARS-CoV-2 represents a major threat to human health, and its diffusion around the world is causing dramatic consequences. The knowledge of the 3D structures of SARS-CoV-2 proteins can facilitate the development of therapeutic and diagnostic molecules. Specifically, comparative analyses of the structures of SARS-CoV-2 proteins and homologous proteins from previously characterized viruses, such as SARS-CoV, can reveal the common and/or distinctive traits that underlie the mechanisms of recognition of cell receptors and of molecules of the immune system. Herein, we apply our recently developed energy-based methods for the prediction of antibody-binding epitopes and protein-protein interaction regions to the Receptor Binding Domain (RBD) of the Spike proteins from SARS-CoV-2 and SARS-CoV. Our analysis focusses only on the study of the structure of RBDs in isolation, without making use of any previous knowledge of binding properties. Importantly, our results highlight structural and sequence differences among the regions that are predicted to be immunoreactive and bind/elicit antibodies. These results provide a rational basis to the observation that several SARS-CoV RDB-specific monoclonal antibodies fail to appreciably bind the SARS-CoV-2 counterpart. Furthermore, we correctly identify the region of SARS-CoV-2 RBD that is engaged by the cell receptor ACE2 during viral entry into host cells. The data, sequences and structures we present here can be useful for the development of novel therapeutic and diagnostic interventions.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The appearance of the novel betacoronavirus SARS-CoV-2 represents a major threat to human health, and its diffusion around the world is causing dramatic consequences. The knowledge of the 3D structures of SARS-CoV-2 proteins can facilitate the development of therapeutic and diagnostic molecules. Specifically, comparative analyses of the structures of SARS-CoV-2 proteins and homologous proteins from previously characterized viruses, such as SARS-CoV, can reveal the common and/or distinctive traits that underlie the mechanisms of recognition of cell receptors and of molecules of the immune system. Herein, we apply our recently developed energy-based methods for the prediction of antibody-binding epitopes and protein-protein interaction regions to the Receptor Binding Domain (RBD) of the Spike proteins from SARS-CoV-2 and SARS-CoV. Our analysis focusses only on the study of the structure of RBDs in isolation, without making use of any previous knowledge of binding properties. Importantly, our results highlight structural and sequence differences among the regions that are predicted to be immunoreactive and bind/elicit antibodies. These results provide a rational basis to the observation that several SARS-CoV RDB-specific monoclonal antibodies fail to appreciably bind the SARS-CoV-2 counterpart. Furthermore, we correctly identify the region of SARS-CoV-2 RBD that is engaged by the cell receptor ACE2 during viral entry into host cells. The data, sequences and structures we present here can be useful for the development of novel therapeutic and diagnostic interventions.
Subject
  • Virology
  • Zoonoses
  • COVID-19
  • Membrane biology
  • Virus genera
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software