value
| - As communities reopen following shelter-in-place orders, they are facing two conflicting objectives. The first is to keep the COVID-19 fatality rate down. The second is to revive the U.S. economy and the livelihood of millions of Americans. In this paper, a team of researchers from the Center on Stochastic Modeling, Optimization, & Statistics (COSMOS) at the University of Texas at Arlington, in collaboration with researchers from University of Texas Southwestern Medical Center and Harvard Medical School, has formulated a computationally-efficient optimization framework, referred to as COSMOS COVID-19 Linear Programming (CC19LP), to study the delicate balance between the expected fatality rate and the level of normalcy in the community. Given the disproportionate fatality characteristics of COVID-19 among those in different age groups or with an underlying medical condition or those living with crowding, the key to the CC19LP framework is a focus on %22key contacts%22 that separate individuals at higher risk from the rest of the population. The philosophy of CC19LP lies in maximizing protection of key contacts, so as to shield high-risk individuals from infection. Given the lack of pharmaceutical solutions, i.e., a vaccine or cure, the CC19LP framework minimizes expected fatalities by optimizing the use of non-pharmaceutical interventions, namely COVID-19 testing; personal protective equipment; and social precautions, such as distancing, hand-washing, and face coverings. Low-risk individuals that are not key contacts, including most children, are unrestricted and can choose to participate in pre-pandemic normal activities, which eliminates the need for compliance across the entire population. Consequently, the CC19LP framework demonstrates optimal strategies for protecting high-risk individuals while reopening communities.
|