About: Reactive programming (RP) languages and Synchronous Coordination (SC) languages share the goal of orchestrating the execution of computational tasks, by imposing dependencies on their execution order and controlling how they share data. RP is often implemented as libraries for existing programming languages, lifting operations over values to operations over streams of values, and providing efficient solutions to manage how updates to such streams trigger reactions, i.e., the execution of dependent tasks. SC is often implemented as a standalone formalism to specify existing component-based architectures, used to analyse, verify, transform, or generate code. These two approaches target different audiences, and it is non-trivial to combine the programming style of RP with the expressive power of synchronous languages. This paper proposes a lightweight programming language to describe component-based Architectures for Reactive systems, dubbed ARx, which blends concepts from RP and SC, mainly inspired to the Reo coordination language and its composition operation, and with tailored constructs for reactive programs such as the ones found in ReScala. ARx is enriched with a type system and with algebraic data types, and has a reactive semantics inspired in RP. We provide typical examples from both the RP and SC literature, illustrate how these can be captured by the proposed language, and describe a web-based prototype tool to edit, parse, and type check programs, and to animate their semantics.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Reactive programming (RP) languages and Synchronous Coordination (SC) languages share the goal of orchestrating the execution of computational tasks, by imposing dependencies on their execution order and controlling how they share data. RP is often implemented as libraries for existing programming languages, lifting operations over values to operations over streams of values, and providing efficient solutions to manage how updates to such streams trigger reactions, i.e., the execution of dependent tasks. SC is often implemented as a standalone formalism to specify existing component-based architectures, used to analyse, verify, transform, or generate code. These two approaches target different audiences, and it is non-trivial to combine the programming style of RP with the expressive power of synchronous languages. This paper proposes a lightweight programming language to describe component-based Architectures for Reactive systems, dubbed ARx, which blends concepts from RP and SC, mainly inspired to the Reo coordination language and its composition operation, and with tailored constructs for reactive programs such as the ones found in ReScala. ARx is enriched with a type system and with algebraic data types, and has a reactive semantics inspired in RP. We provide typical examples from both the RP and SC literature, illustrate how these can be captured by the proposed language, and describe a web-based prototype tool to edit, parse, and type check programs, and to animate their semantics.
Subject
  • Object-oriented programming
  • Programming paradigms
  • Programming languages
  • Programming language classification
  • Evaluation strategy
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software