AttributesValues
type
value
  • During the COVID-19 pandemic, the scientific community developed predictive models to evaluate potential governmental interventions. However, the analysis of the effects these interventions had is less advanced. Here, we propose a data-driven framework to assess these effects retrospectively. We use a regularized regression to find a parsimonious model that fits the data with the least changes in the Rt parameter. Then, we postulate each jump in Rt as the effect of an intervention. Following the do-operator prescriptions, we simulate the counterfactual case by forcing Rt to stay at the pre-jump value. We then attribute a value to the intervention from the difference between true evolution and simulated counterfactual. We show that the recommendation to use facemasks for all activities would reduce the number of cases by 170000 (95% CI 160000 to 180000) in Connecticut, Massachusetts, and New York State. The framework presented here might be used in any case where cause and effects are sparse in time.
Subject
  • Prediction
  • Philosophical theories
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software