AttributesValues
type
value
  • COVID-19 has led to an unprecedented healthcare crisis with millions of infected people across the globe often pushing infrastructures, healthcare workers and entire economies beyond their limits. The scarcity of testing kits, even in developed countries, has led to extensive research efforts towards alternative solutions with high sensitivity. Chest radiological imaging paired with artificial intelligence (AI) can offer significant advantages in diagnosis of novel coronavirus infected patients. To this end, transfer learning techniques are used for overcoming the limitations emanating from the lack of relevant big datasets, enabling specialized models to converge on limited data, as in the case of X-rays of COVID-19 patients. In this study, we present an interpretable AI framework assessed by expert radiologists on the basis on how well the attention maps focus on the diagnostically-relevant image regions. The proposed transfer learning methodology achieves an overall area under the curve of 1 for a binary classification problem across a 5-fold training/testing dataset.
Subject
  • Radiology
  • Zoonoses
  • Viral respiratory tract infections
  • Economic geography
  • Machine learning
  • Medical physics
  • COVID-19
  • Medical imaging
  • Electromagnetic spectrum
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software