AttributesValues
type
value
  • Heterogeneous architectures that use Graphics Processing Units (GPUs) for general computations, in addition to multicore CPUs, are increasingly common in high-performance computing. However many of the existing methods for scheduling precedence-constrained tasks on such platforms were intended for more diversely heterogeneous clusters, such as the classic Heterogeneous Earliest Finish Time (HEFT) heuristic. We propose a new static scheduling heuristic called Heterogeneous Optimistic Finish Time (HOFT) which exploits the binary heterogeneity of accelerated platforms. Through extensive experimentation with custom software for simulating task scheduling problems on user-defined CPU-GPU platforms, we show that HOFT can obtain schedules at least [Formula: see text] shorter than HEFT’s for medium-to-large numerical linear algebra application task graphs and around [Formula: see text] shorter on average for a large collection of randomly-generated graphs.
Subject
  • Artificial intelligence
  • Virtual reality
  • Heuristic algorithms
  • Supercomputers
  • OpenCL compute devices
  • GPGPU
  • Scheduling algorithms
  • Hardware acceleration
  • Graphics hardware
  • Application-specific integrated circuits
  • Graphics processing units
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software