AttributesValues
type
value
  • Simulating atomic evolution for the mechanics and structure of materials presents an ever-growing challenge due to the huge number of degrees of freedom borne from the high-dimensional spaces in which increasingly high-fidelity material models are defined. To efficiently exploit the domain-, data-, and approximation-based hierarchies hidden in many such problems, we propose a trilateration-based multilevel method to initialize the underlying optimization and benchmark its application on the simple yet practical Lennard-Jones potential. We show that by taking advantage of a known hierarchy present in this problem, not only a faster convergence, but also a better local minimum can be achieved comparing to random initial guess.
subject
  • Thermodynamics
  • Intermolecular forces
  • Theoretical chemistry
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software