About: OBJECTIVE: Healthcare providers in emergency departments should wear respirators for infection protection. However, the wearer's vigorous movements during cardiopulmonary resuscitation may affect the protective performance of the respirator. Herein, we aimed to assess the effects of chest compressions (CCs) on the protective performance of respirators. METHODS: This crossover study evaluated 30 healthcare providers from 1 emergency department who performed CC with real-time feedback. The first, second, and third groups started with a cup-type, fold-type, and valve-type respirator, respectively, after which the respirators were randomized for each group. The fit factors were measured using a quantitative fit testing device before and during the CC in each experiment. The protection rate was defined as the proportion of respirators achieving a fit factor ≥100. RESULTS: The fold-type respirator had a significantly greater protection rate at baseline (100.0% ± 0.0%) compared to the cup-type (73.6% ± 39.6%, P = .003) and valve-type respirators (87.5% ± 30.3%, P = .012). During the CC, the fit factor values significantly decreased for the cup-type (44.9% ± 42.8%, P < .001) and valve-type respirators (59.5% ± 41.7%, P = .002), but not for the fold-type respirator (93.2% ± 21.7%, P = .095). CONCLUSIONS: The protective performances of respirators may be influenced by CC. Healthcare providers should identify the respirator that provides the best fit for their intended tasks.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • OBJECTIVE: Healthcare providers in emergency departments should wear respirators for infection protection. However, the wearer's vigorous movements during cardiopulmonary resuscitation may affect the protective performance of the respirator. Herein, we aimed to assess the effects of chest compressions (CCs) on the protective performance of respirators. METHODS: This crossover study evaluated 30 healthcare providers from 1 emergency department who performed CC with real-time feedback. The first, second, and third groups started with a cup-type, fold-type, and valve-type respirator, respectively, after which the respirators were randomized for each group. The fit factors were measured using a quantitative fit testing device before and during the CC in each experiment. The protection rate was defined as the proportion of respirators achieving a fit factor ≥100. RESULTS: The fold-type respirator had a significantly greater protection rate at baseline (100.0% ± 0.0%) compared to the cup-type (73.6% ± 39.6%, P = .003) and valve-type respirators (87.5% ± 30.3%, P = .012). During the CC, the fit factor values significantly decreased for the cup-type (44.9% ± 42.8%, P < .001) and valve-type respirators (59.5% ± 41.7%, P = .002), but not for the fold-type respirator (93.2% ± 21.7%, P = .095). CONCLUSIONS: The protective performances of respirators may be influenced by CC. Healthcare providers should identify the respirator that provides the best fit for their intended tasks.
Subject
  • Cardiopulmonary resuscitation
  • Epidemiology
  • Infectious diseases
  • Health care
  • Respirators
  • Health care industry
  • Emergency medicine
  • Hospital departments
  • Health care occupations
  • Types of health care facilities
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software