About: Background Room ventilation is a key determinant of airborne disease transmission. Despite this, ventilation guidelines in hospitals are not founded on robust scientific evidence related to the prevention of airborne transmission. Methods We sought to assess the effect of ventilation rates on influenza, tuberculosis, and rhinovirus infection risk within 3 distinct rooms in a major urban hospital: a lung function laboratory, an emergency department negative-pressure isolation room, and an outpatient consultation room. Air-exchange rate measurements were performed in each room using CO2 as a tracer. The model developed by Gammaitoni and Nucci was used to estimate infection risk. Results Current outdoor air-exchange rates in the lung function laboratory and emergency department isolation room limited infection risks to 0.1%-3.6%. Influenza risk for individuals entering an outpatient consultation room after an infectious individual departed ranged from 3.6% to 20.7%, depending on the duration for which each person occupied the room. Conclusion Given the absence of definitive ventilation guidelines for hospitals, air-exchange measurements combined with modeling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation for preventing airborne disease transmission.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background Room ventilation is a key determinant of airborne disease transmission. Despite this, ventilation guidelines in hospitals are not founded on robust scientific evidence related to the prevention of airborne transmission. Methods We sought to assess the effect of ventilation rates on influenza, tuberculosis, and rhinovirus infection risk within 3 distinct rooms in a major urban hospital: a lung function laboratory, an emergency department negative-pressure isolation room, and an outpatient consultation room. Air-exchange rate measurements were performed in each room using CO2 as a tracer. The model developed by Gammaitoni and Nucci was used to estimate infection risk. Results Current outdoor air-exchange rates in the lung function laboratory and emergency department isolation room limited infection risks to 0.1%-3.6%. Influenza risk for individuals entering an outpatient consultation room after an infectious individual departed ranged from 3.6% to 20.7%, depending on the duration for which each person occupied the room. Conclusion Given the absence of definitive ventilation guidelines for hospitals, air-exchange measurements combined with modeling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation for preventing airborne disease transmission.
subject
  • Infectious diseases
  • Clinical research
  • Fluid dynamics
  • Healthcare-associated infections
  • Infectious diseases by mode of transmission
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software