AttributesValues
type
value
  • Microfluidic particle counters are important tools in biomedical diagnostic applications such as flow cytometry analysis. Major methods of counting particles in microfluidic devices are reviewed in this paper. The microfluidic resistive pulse sensor advances in sensitivity over the traditional Coulter counter by improving signal amplification and noise reduction techniques. Nanopore-based methods are used for single DNA molecule analysis and the capacitance counter is useful in liquids of low electrical conductivity and in sensing the changes of cell contents. Light-scattering and light-blocking counters are better for detecting larger particles or concentrated particles. Methods of using fluorescence detection have the capability for differentiating particles of similar sizes but different types that are labeled with different fluorescent dyes. The micro particle image velocimetry method has also been used for detecting and analyzing particles in a flow field. The general limitation of microfluidic particle counters is the low throughput which needs to be improved in the future. The integration of two or more existing microfluidic particle counting techniques is required for many practical on-chip applications.
Subject
  • Biotechnology
  • Nanotechnology
  • Microfluidics
  • Digital electronics
  • Fluid dynamics
  • Gas technologies
  • Semiconductor devices
  • Image noise reduction techniques
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software