value
| - Abstract Mucosal surfaces are the interface between the host’s internal milieu and the external environment, and they have dual functions, serving as physical barriers to foreign antigens and as accepting sites for vital materials. Mucosal vaccines are more favored to prevent mucosal infections from the portal of entry. Although mucosal vaccination has many advantages, licensed mucosal vaccines are scarce. The most widely studied mucosal routes are oral and intranasal. Licensed oral and intranasal vaccines are composed mostly of whole cell killed or live attenuated microorganisms serving as both delivery systems and built-in adjuvants. Future mucosal vaccines should be made with more purified antigen components, which will be relatively less immunogenic. To induce robust protective immune responses against well-purified vaccine antigens, an effective mucosal delivery system is an essential requisite. Recent developments in biomaterials and nanotechnology have enabled many innovative mucosal vaccine trials. For oral vaccination, the vaccine delivery system should be able to stably carry antigens and adjuvants and resist harsh physicochemical conditions in the stomach and intestinal tract. Besides many nano/microcarrier tools generated by using natural and chemical materials, the development of oral vaccine delivery systems using food materials should be more robustly researched to expand vaccine coverage of gastrointestinal infections in developing countries. For intranasal vaccination, the vaccine delivery system should survive the very active mucociliary clearance mechanisms and prove safety because of the anatomical location of nasal cavity separated by a thin barrier. Future mucosal vaccine carriers, regardless of administration routes, should have certain common characteristics. They should maintain stability in given environments, be mucoadhesive, and have the ability to target specific tissues and cells.
|