About: In this article, we define systems biology of virus entry in mammalian cells as the discipline that combines several approaches to comprehensively understand the collective physical behaviour of virus entry routes, and to understand the coordinated operation of the functional modules and molecular machineries that lead to this physical behaviour. Clearly, these are extremely ambitious aims, but recent developments in different life science disciplines slowly allow us to set them as realistic, although very distant, goals. Besides classical approaches to obtain high‐resolution information of the molecules, particles and machines involved, we require approaches that can monitor collective behaviour of many molecules, particles and machines simultaneously, in order to reveal design principles of the systems as a whole. Here we will discuss approaches that fall in the latter category, namely time‐lapse imaging and single‐particle tracking (SPT) combined with computational analysis and modelling, and genome‐wide RNA interference approaches to reveal the host components required for virus entry. These techniques should in the future allow us to assign host genes to the systems’ functions and characteristics, and allow emergence‐driven, in silico assembly of networks that include interactions with increasing hierarchy (molecules–multiprotein complexes–vesicles and organelles), and kinetics and subcellular spatiality, in order to allow realistic simulations of virus entry in real time.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • In this article, we define systems biology of virus entry in mammalian cells as the discipline that combines several approaches to comprehensively understand the collective physical behaviour of virus entry routes, and to understand the coordinated operation of the functional modules and molecular machineries that lead to this physical behaviour. Clearly, these are extremely ambitious aims, but recent developments in different life science disciplines slowly allow us to set them as realistic, although very distant, goals. Besides classical approaches to obtain high‐resolution information of the molecules, particles and machines involved, we require approaches that can monitor collective behaviour of many molecules, particles and machines simultaneously, in order to reveal design principles of the systems as a whole. Here we will discuss approaches that fall in the latter category, namely time‐lapse imaging and single‐particle tracking (SPT) combined with computational analysis and modelling, and genome‐wide RNA interference approaches to reveal the host components required for virus entry. These techniques should in the future allow us to assign host genes to the systems’ functions and characteristics, and allow emergence‐driven, in silico assembly of networks that include interactions with increasing hierarchy (molecules–multiprotein complexes–vesicles and organelles), and kinetics and subcellular spatiality, in order to allow realistic simulations of virus entry in real time.
subject
  • Organelles
  • HIV/AIDS
  • Causes of death
  • Discovery and invention controversies
  • IARC Group 2B carcinogens
  • Lentiviruses
  • Membrane biology
  • Sexually transmitted diseases and infections
  • Audiovisual introductions in 1897
  • 1983 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software