AttributesValues
type
value
  • This work is dedicated to simulating the Enhanced Oil Recovery (EOR) process of foam injection in a fully saturated reservoir. The presence of foam in the gas-water mixture acts in controlling the mobility of the gas phase, contributing to reduce the effects of fingering and gravity override. A fractional flow formulation based on global pressure is used, resulting in a system of Partial Differential Equations (PDEs) that describe two coupled problems of distinct kinds: elliptic and hyperbolic. The numerical methodology is based on splitting the system of equations into two sub-systems that group equations of the same kind and on applying a hybrid finite element method to solve the elliptic problem and a high-order finite volume method to solve the hyperbolic equations. Numerical results show good efficiency of the algorithm, as well as the remarkable ability of the foam to increase reservoir sweep efficiency by reducing gravity override and fingering effects.
Subject
  • Curves
  • Differential equations
  • Partial differential equations
  • Phases of matter
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software