AttributesValues
type
value
  • Mass spectrometry-based proteomics has become the leading approach for analyzing complex biological samples at a large-scale level. Its importance for clinical applications is more and more increasing, thanks to the development of high-performing instruments which allow the discovery of disease-specific biomarkers and an automated and rapid protein profiling of the analyzed samples. In this scenario, the large-scale production of proteomic data has driven the development of specific bioinformatic tools to assist researchers during the discovery processes. Here, we discuss the main methods, algorithms, and procedures to identify and use biomarkers for clinical and research purposes. In particular, we have been focused on quantitative approaches, the identification of proteotypic peptides, and the classification of samples, using proteomic data. Finally, this chapter is concluded by reporting the integration of experimental data with network datasets, as valuable instrument for identifying alterations that underline the emergence of specific phenotypes. Based on our experience, we show some examples taking into consideration experimental data obtained by multidimensional protein identification technology (MudPIT) approach.
subject
  • Proteomics
  • Omics
  • Ions
  • Charge carriers
  • Physical chemistry
  • Quantitative research
  • Earth sciences data formats
  • Aviation meteorology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software