AttributesValues
type
value
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in late 2019 in Wuhan City, China. The virus may cause novel coronavirus disease 2019 (COVID-19) in symptomatic individuals. Since December of 2019, there have been over 7,000,000 confirmed cases and over 400,000 confirmed deaths worldwide. In the United States (U.S.), there have been over 2,000,000 confirmed cases and over 110,000 confirmed deaths. COVID-19 case data in the United States has been updated daily at the county level since the first case was reported in January of 2020. There currently lacks a study that showcases the novelty of daily COVID-19 surveillance using space-time cluster detection techniques. In this paper, we utilize a prospective Poisson space-time scan statistic to detect daily clusters of COVID-19 at the county level in the contiguous 48 U.S. and Washington D.C. As the pandemic progresses, we generally find an increase of smaller clusters of remarkably steady relative risk. Daily tracking of significant space-time clusters can facilitate decision-making and public health resource allocation by evaluating and visualizing the size, relative risk, and locations that are identified as COVID-19 hotspots.
subject
  • Virology
  • United States
  • Prediction
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software