About: BACKGROUND: The development of neutralizing antibodies (NAbs) against SARS-CoV-2, following infection or vaccination, is likely to be critical for the development of sufficient population immunity to drive cessation of the COVID19 pandemic. A large number of serologic tests, platforms and methodologies are being employed to determine seroprevalence in populations to select convalescent plasmas for therapeutic trials, and to guide policies about reopening. However, these tests have substantially variable sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. METHODS: We determined levels of antibodies in convalescent plasma using commercially available SARS-CoV-2 detection tests and in-house ELISA assays and correlated those measurements with neutralization activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. FINDINGS: Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have varying degrees of accuracy in predicting neutralizing activity. Nevertheless, we found particular commercially available tests are capable of accurately measuring levels of antibodies that strongly correlate with neutralization assays. INTERPRETATION: Our findings imply that SARS-CoV-2 convalescent plasma donors have a wide range of antibody concentrations. At present it is unclear how antibody acquisition, particularly for low titer individuals, might afford future immunity to SARS-CoV-2. Further research will be required to determine the minimum threshold of antibody and neutralization activity necessary to accurately predict immunity. Correlation of clinical antibody tests with neutralization activity in this study could serve as a valuable ‘roadmap’ to guide the choice and interpretation of serological tests for SARS-CoV-2.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND: The development of neutralizing antibodies (NAbs) against SARS-CoV-2, following infection or vaccination, is likely to be critical for the development of sufficient population immunity to drive cessation of the COVID19 pandemic. A large number of serologic tests, platforms and methodologies are being employed to determine seroprevalence in populations to select convalescent plasmas for therapeutic trials, and to guide policies about reopening. However, these tests have substantially variable sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. METHODS: We determined levels of antibodies in convalescent plasma using commercially available SARS-CoV-2 detection tests and in-house ELISA assays and correlated those measurements with neutralization activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. FINDINGS: Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have varying degrees of accuracy in predicting neutralizing activity. Nevertheless, we found particular commercially available tests are capable of accurately measuring levels of antibodies that strongly correlate with neutralization assays. INTERPRETATION: Our findings imply that SARS-CoV-2 convalescent plasma donors have a wide range of antibody concentrations. At present it is unclear how antibody acquisition, particularly for low titer individuals, might afford future immunity to SARS-CoV-2. Further research will be required to determine the minimum threshold of antibody and neutralization activity necessary to accurately predict immunity. Correlation of clinical antibody tests with neutralization activity in this study could serve as a valuable ‘roadmap’ to guide the choice and interpretation of serological tests for SARS-CoV-2.
subject
  • Bioinformatics
  • Vaccination
  • Zoonoses
  • Serology
  • Epidemiology
  • COVID-19
  • Chiroptera-borne diseases
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software