AttributesValues
type
value
  • Abstract In this article, the optimal control for nonlinear SIRC model is studied in fractional order using the Caputo fractional derivative. Graph signal flow is given of the model and simulated by Simulink/Matlab which helps in discussing the topological structure of the model. Dynamics of the system versus certain parameters are studied via bifurcation diagrams, Lyapunov exponents and Poincare maps. The existence of a uniformly stable solution is proved after control. The obtained results display the activeness and suitability of the Mittag Generalized-Leffler function method (MGLFM). The approximate solution of the fractional order SIRC model using MGLFM is explained by giving the figures of solutions before and after control. Also, we plot the 3D relationships with different alpha (fractional order) which display the originality and suitability of the results.
Subject
  • Data-centric programming languages
  • Data visualization software
  • Numerical software
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software