About: Artificial intelligence can potentially provide a substantial role in streamlining chest computed tomography (CT) diagnosis of COVID-19 patients. However, several critical hurdles have impeded the development of robust AI model, which include deficiency, isolation, and heterogeneity of CT data generated from diverse institutions. These bring about lack of generalization of AI model and therefore prevent it from applications in clinical practices. To overcome this, we proposed a federated learning-based Unified CT-COVID AI Diagnostic Initiative (UCADI, http://www.ai-ct-covid.team/), a decentralized architecture where the AI model is distributed to and executed at each host institution with the data sources or client ends for training and inferencing without sharing individual patient data. Specifically, we firstly developed an initial AI CT model based on data collected from three Tongji hospitals in Wuhan. After model evaluation, we found that the initial model can identify COVID from Tongji CT test data at near radiologist-level (97.5% sensitivity) but performed worse when it was tested on COVID cases from Wuhan Union Hospital (72% sensitivity), indicating a lack of model generalization. Next, we used the publicly available UCADI framework to build a federated model which integrated COVID CT cases from the Tongji hospitals and Wuhan Union hospital (WU) without transferring the WU data. The federated model not only performed similarly on Tongji test data but improved the detection sensitivity (98%) on WU test cases. The UCADI framework will allow participants worldwide to use and contribute to the model, to deliver a real-world, globally built and validated clinic CT-COVID AI tool. This effort directly supports the United Nations Sustainable Development Goals’ number 3, Good Health and Well-Being, and allows sharing and transferring of knowledge to fight this devastating disease around the world.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Artificial intelligence can potentially provide a substantial role in streamlining chest computed tomography (CT) diagnosis of COVID-19 patients. However, several critical hurdles have impeded the development of robust AI model, which include deficiency, isolation, and heterogeneity of CT data generated from diverse institutions. These bring about lack of generalization of AI model and therefore prevent it from applications in clinical practices. To overcome this, we proposed a federated learning-based Unified CT-COVID AI Diagnostic Initiative (UCADI, http://www.ai-ct-covid.team/), a decentralized architecture where the AI model is distributed to and executed at each host institution with the data sources or client ends for training and inferencing without sharing individual patient data. Specifically, we firstly developed an initial AI CT model based on data collected from three Tongji hospitals in Wuhan. After model evaluation, we found that the initial model can identify COVID from Tongji CT test data at near radiologist-level (97.5% sensitivity) but performed worse when it was tested on COVID cases from Wuhan Union Hospital (72% sensitivity), indicating a lack of model generalization. Next, we used the publicly available UCADI framework to build a federated model which integrated COVID CT cases from the Tongji hospitals and Wuhan Union hospital (WU) without transferring the WU data. The federated model not only performed similarly on Tongji test data but improved the detection sensitivity (98%) on WU test cases. The UCADI framework will allow participants worldwide to use and contribute to the model, to deliver a real-world, globally built and validated clinic CT-COVID AI tool. This effort directly supports the United Nations Sustainable Development Goals’ number 3, Good Health and Well-Being, and allows sharing and transferring of knowledge to fight this devastating disease around the world.
subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Occupational safety and health
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software