About: The aim of this study is to compare the accuracy of Airgo™, a non-invasive wearable device that records breath, with respect to a gold standard. In 21 healthy subjects (10 males, 11 females), four parameters were recorded for four min at rest and in different positions simultaneously by Airgo™ and SensorMedics 2900 metabolic cart. Then, a cardio-pulmonary exercise test was performed using the Erg 800S cycle ergometer in order to test Airgo™’s accuracy during physical effort. The results reveal that the relative error median percentage of respiratory rate was of 0% for all positions at rest and for different exercise intensities, with interquartile ranges between 3.5 (standing position) and 22.4 (low-intensity exercise) breaths per minute. During exercise, normalized amplitude and ventilation relative error medians highlighted the presence of an error proportional to the volume to be estimated. For increasing intensity levels of exercise, Airgo™’s estimate tended to underestimate the values of the gold standard instrument. In conclusion, the Airgo™ device provides good accuracy and precision in the estimate of respiratory rate (especially at rest), an acceptable estimate of tidal volume and minute ventilation at rest and an underestimation for increasing volumes.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The aim of this study is to compare the accuracy of Airgo™, a non-invasive wearable device that records breath, with respect to a gold standard. In 21 healthy subjects (10 males, 11 females), four parameters were recorded for four min at rest and in different positions simultaneously by Airgo™ and SensorMedics 2900 metabolic cart. Then, a cardio-pulmonary exercise test was performed using the Erg 800S cycle ergometer in order to test Airgo™’s accuracy during physical effort. The results reveal that the relative error median percentage of respiratory rate was of 0% for all positions at rest and for different exercise intensities, with interquartile ranges between 3.5 (standing position) and 22.4 (low-intensity exercise) breaths per minute. During exercise, normalized amplitude and ventilation relative error medians highlighted the presence of an error proportional to the volume to be estimated. For increasing intensity levels of exercise, Airgo™’s estimate tended to underestimate the values of the gold standard instrument. In conclusion, the Airgo™ device provides good accuracy and precision in the estimate of respiratory rate (especially at rest), an acceptable estimate of tidal volume and minute ventilation at rest and an underestimation for increasing volumes.
subject
  • Medical tests
  • Medical procedures
  • Respiratory physiology
  • Ambient intelligence
  • Software quality
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software