AttributesValues
type
value
  • We study the reported data from the COVID-19 pandemic outbreak in January - May 2020 in 119 countries. We observe that the time series of active cases in individual countries (the difference of the total number of confirmed infections and the sum of the total number of reported deaths and recovered cases) display a strong agreement with polynomial growth and at a later epidemic stage also with a combined polynomial growth with exponential decay. Our results are also formulated in terms of compartment type mathematical models of epidemics. Within these models the universal scaling characterizing the observed regime in an advanced epidemic stage can be interpreted as an algebraic decay of the relative reproduction number $R_0$ as $T_M/t$, where $T_M$ is a constant and $t$ is the duration of the epidemic outbreak. We show how our findings can be applied to improve predictions of the reported pandemic data and estimate some epidemic parameters. Note that although the model shows a good agreement with the reported data we do not make any claims about the real size of the pandemics as the relation of the observed reported data to the total number of infected in the population is still unknown.
subject
  • Epidemics
  • Pandemics
  • Biological hazards
  • Exponentials
  • 2019 disasters in China
  • 2019 health disasters
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software