About: Acute lung inflammation has severe morbidity, as seen in COVID-19 patients. Lung inflammation is accompanied or led by massive accumulation of neutrophils in pulmonary capillaries (“margination”). We sought to identify nanostructural properties that predispose nanoparticles to accumulate in pulmonary marginated neutrophils, and therefore to target severely inflamed lungs. We designed a library of nanoparticles and conducted an in vivo screen of biodistributions in naive mice and mice treated with lipopolysaccharides. We found that supramolecular organization of protein in nanoparticles predicts uptake in inflamed lungs. Specifically, nanoparticles with agglutinated protein (NAPs) efficiently home to pulmonary neutrophils, while protein nanoparticles with symmetric structure (e.g. viral capsids) are ignored by pulmonary neutrophils. We validated this finding by engineering protein-conjugated liposomes that recapitulate NAP targeting to neutrophils in inflamed lungs. We show that NAPs can diagnose acute lung injury in SPECT imaging and that NAP-like liposomes can mitigate neutrophil extravasation and pulmonary edema arising in lung inflammation. Finally, we demonstrate that ischemic ex vivo human lungs selectively take up NAPs, illustrating translational potential. This work demonstrates that structure-dependent interactions with neutrophils can dramatically alter the biodistribution of nanoparticles, and NAPs have significant potential in detecting and treating respiratory conditions arising from injury or infections.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Acute lung inflammation has severe morbidity, as seen in COVID-19 patients. Lung inflammation is accompanied or led by massive accumulation of neutrophils in pulmonary capillaries (“margination”). We sought to identify nanostructural properties that predispose nanoparticles to accumulate in pulmonary marginated neutrophils, and therefore to target severely inflamed lungs. We designed a library of nanoparticles and conducted an in vivo screen of biodistributions in naive mice and mice treated with lipopolysaccharides. We found that supramolecular organization of protein in nanoparticles predicts uptake in inflamed lungs. Specifically, nanoparticles with agglutinated protein (NAPs) efficiently home to pulmonary neutrophils, while protein nanoparticles with symmetric structure (e.g. viral capsids) are ignored by pulmonary neutrophils. We validated this finding by engineering protein-conjugated liposomes that recapitulate NAP targeting to neutrophils in inflamed lungs. We show that NAPs can diagnose acute lung injury in SPECT imaging and that NAP-like liposomes can mitigate neutrophil extravasation and pulmonary edema arising in lung inflammation. Finally, we demonstrate that ischemic ex vivo human lungs selectively take up NAPs, illustrating translational potential. This work demonstrates that structure-dependent interactions with neutrophils can dramatically alter the biodistribution of nanoparticles, and NAPs have significant potential in detecting and treating respiratory conditions arising from injury or infections.
subject
  • Virology
  • Medical physics
  • Cell biology
  • Phagocytes
  • Granulocytes
  • Human cells
  • Membrane biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software