value
| - Humanity is facing an increasing number of highly virulent and communicable diseases such as influenza. Combating such global diseases requires in-depth knowledge of their epidemiology. The only practical method for discovering global epidemiological knowledge and identifying prophylactic strategies is simulation. However, several interrelated factors, including increasing model complexity, stochastic nature of diseases, and short analysis timeframes render exhaustive analysis an infeasible task. An effective approach to alleviate the aforementioned issues and enable efficient epidemiological analysis is to manually steer bio-simulations to scenarios of interest. Selective steering preserves causality, inter-dependencies, and stochastic characteristics in the model better than “seeding”, i.e., manually setting simulation state. Accordingly, we have developed a novel Eco-modeling and bio-simulation environment called SEARUMS. The bio-simulation infrastructure of SEARUMS permits a human-in-the-loop to steer the simulation to scenarios of interest so that epidemics can be effectively modeled and analyzed. This article discusses mathematical principles underlying SEARUMS along with its software architecture and design. In addition, the article also presents the bio-simulations and multi-faceted case studies conducted using SEARUMS to elucidate its ability to forecast timelines, epicenters, and socio-economic impacts of epidemics. Currently, the primary emphasis of SEARUMS is to ease global epidemiological analysis of avian influenza. However, the methodology is sufficiently generic and it can be adapted for other epidemiological analysis required to effectively combat various diseases.
|