About: Humanity is facing an increasing number of highly virulent and communicable diseases such as influenza. Combating such global diseases requires in-depth knowledge of their epidemiology. The only practical method for discovering global epidemiological knowledge and identifying prophylactic strategies is simulation. However, several interrelated factors, including increasing model complexity, stochastic nature of diseases, and short analysis timeframes render exhaustive analysis an infeasible task. An effective approach to alleviate the aforementioned issues and enable efficient epidemiological analysis is to manually steer bio-simulations to scenarios of interest. Selective steering preserves causality, inter-dependencies, and stochastic characteristics in the model better than “seeding”, i.e., manually setting simulation state. Accordingly, we have developed a novel Eco-modeling and bio-simulation environment called SEARUMS. The bio-simulation infrastructure of SEARUMS permits a human-in-the-loop to steer the simulation to scenarios of interest so that epidemics can be effectively modeled and analyzed. This article discusses mathematical principles underlying SEARUMS along with its software architecture and design. In addition, the article also presents the bio-simulations and multi-faceted case studies conducted using SEARUMS to elucidate its ability to forecast timelines, epicenters, and socio-economic impacts of epidemics. Currently, the primary emphasis of SEARUMS is to ease global epidemiological analysis of avian influenza. However, the methodology is sufficiently generic and it can be adapted for other epidemiological analysis required to effectively combat various diseases.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Humanity is facing an increasing number of highly virulent and communicable diseases such as influenza. Combating such global diseases requires in-depth knowledge of their epidemiology. The only practical method for discovering global epidemiological knowledge and identifying prophylactic strategies is simulation. However, several interrelated factors, including increasing model complexity, stochastic nature of diseases, and short analysis timeframes render exhaustive analysis an infeasible task. An effective approach to alleviate the aforementioned issues and enable efficient epidemiological analysis is to manually steer bio-simulations to scenarios of interest. Selective steering preserves causality, inter-dependencies, and stochastic characteristics in the model better than “seeding”, i.e., manually setting simulation state. Accordingly, we have developed a novel Eco-modeling and bio-simulation environment called SEARUMS. The bio-simulation infrastructure of SEARUMS permits a human-in-the-loop to steer the simulation to scenarios of interest so that epidemics can be effectively modeled and analyzed. This article discusses mathematical principles underlying SEARUMS along with its software architecture and design. In addition, the article also presents the bio-simulations and multi-faceted case studies conducted using SEARUMS to elucidate its ability to forecast timelines, epicenters, and socio-economic impacts of epidemics. Currently, the primary emphasis of SEARUMS is to ease global epidemiological analysis of avian influenza. However, the methodology is sufficiently generic and it can be adapted for other epidemiological analysis required to effectively combat various diseases.
subject
  • Virology
  • Epidemiology
  • Environmental social science
  • Evaluation methods
  • Software architecture
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software