About: Background: Estimating the prevalence of severe or critical illness and case fatality of COVID-19 outbreak in December, 2019 remains a challenge due to biases associated with surveillance, data synthesis and reporting. We aimed to address this limitation in a systematic review and meta-analysis and to examine the clinical, biochemical and radiological risk factors in a meta-regression. Methods: PRISMA guidelines were followed. PubMed, Scopus and Web of Science were searched using pre-specified keywords on March 07, 2020. Peer-reviewed empirical studies examining rates of severe illness, critical illness and case fatality among COVID-19 patients were examined. Numerators and denominators to compute the prevalence rates and risk factors were extracted. Random-effects meta-analyses were performed. Results were corrected for publication bias. Meta-regression analyses examined the moderator effects of potential risk factors. Results: The meta-analysis included 29 studies representing 2,090 individuals. Pooled rates of severe illness, critical illness and case fatality among COVID-19 patients were 15%, 5% and 0.8% respectively. Adjusting for potential underreporting and publication bias, increased these estimates to 26%, 16% and 7.4% respectively. Increasing age and elevated LDH consistently predicted severe / critical disease and case fatality. Hypertension; fever and dyspnea at presentation; and elevated CRP predicted increased severity. Conclusions: Risk factors that emerged in our analyses predicting severity and case fatality should inform clinicians to define endophenotypes possessing a greater risk. Estimated case fatality rate of 7.4% after correcting for publication bias underscores the importance of strict adherence to preventive measures, case detection, surveillance and reporting.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background: Estimating the prevalence of severe or critical illness and case fatality of COVID-19 outbreak in December, 2019 remains a challenge due to biases associated with surveillance, data synthesis and reporting. We aimed to address this limitation in a systematic review and meta-analysis and to examine the clinical, biochemical and radiological risk factors in a meta-regression. Methods: PRISMA guidelines were followed. PubMed, Scopus and Web of Science were searched using pre-specified keywords on March 07, 2020. Peer-reviewed empirical studies examining rates of severe illness, critical illness and case fatality among COVID-19 patients were examined. Numerators and denominators to compute the prevalence rates and risk factors were extracted. Random-effects meta-analyses were performed. Results were corrected for publication bias. Meta-regression analyses examined the moderator effects of potential risk factors. Results: The meta-analysis included 29 studies representing 2,090 individuals. Pooled rates of severe illness, critical illness and case fatality among COVID-19 patients were 15%, 5% and 0.8% respectively. Adjusting for potential underreporting and publication bias, increased these estimates to 26%, 16% and 7.4% respectively. Increasing age and elevated LDH consistently predicted severe / critical disease and case fatality. Hypertension; fever and dyspnea at presentation; and elevated CRP predicted increased severity. Conclusions: Risk factors that emerged in our analyses predicting severity and case fatality should inform clinicians to define endophenotypes possessing a greater risk. Estimated case fatality rate of 7.4% after correcting for publication bias underscores the importance of strict adherence to preventive measures, case detection, surveillance and reporting.
subject
  • Meta-analysis
  • Systematic review
  • Evidence-based practices
  • Online databases
  • United States National Library of Medicine
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software