About: A mainstay of personal protective equipment (PPE) during the COVID-19 pandemic is the N95 filtering facepiece respirator. N95 respirators are commonly used to protect healthcare workers from respiratory pathogens, including the novel coronavirus SARS-CoV-2, and are increasingly employed by other frontline workers and the general public. Under routine circumstances, these masks are disposable, single-use items, but extended use and reuse practices have been broadly enacted to alleviate critical supply shortages during the COVID-19 pandemic. While extended-time single use presents a low risk of pathogen transfer, repeated donning and doffing of potentially contaminated masks presents increased risk of pathogen transfer. Therefore, efficient and safe decontamination methods for N95 masks are needed to reduce the risk of reuse and mitigate local supply shortages. Here we review the available literature concerning use of germicidal ultraviolet-C (UV-C) light to decontaminate N95 masks. We propose a practical method for repeated point-of-use decontamination, using commercially-available UV-C crosslinker boxes from molecular biology laboratories or a simple low-cost, custom-designed and fabricated device to expose each side of the mask to 800-1200 mJ/cm2 of UV-C. We measure the dose that penetrated to the interior of the respirators and model the potential germicidal action on SARS-CoV-2. Our experimental results, in combination with modeled data, suggest that a two-minute UV-C treatment cycle should induce a >3-log-order reduction in viral bioburden on the surface of the respirators, and a 2-log order reduction throughout the interior. The resulting exposure is 100-fold less than the dose expected to damage the masks, facilitating repeated decontamination. As such, UV-C germicidal irradiation (UVGI) is a practical strategy for small-scale point-of-use decontamination of N95s.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • A mainstay of personal protective equipment (PPE) during the COVID-19 pandemic is the N95 filtering facepiece respirator. N95 respirators are commonly used to protect healthcare workers from respiratory pathogens, including the novel coronavirus SARS-CoV-2, and are increasingly employed by other frontline workers and the general public. Under routine circumstances, these masks are disposable, single-use items, but extended use and reuse practices have been broadly enacted to alleviate critical supply shortages during the COVID-19 pandemic. While extended-time single use presents a low risk of pathogen transfer, repeated donning and doffing of potentially contaminated masks presents increased risk of pathogen transfer. Therefore, efficient and safe decontamination methods for N95 masks are needed to reduce the risk of reuse and mitigate local supply shortages. Here we review the available literature concerning use of germicidal ultraviolet-C (UV-C) light to decontaminate N95 masks. We propose a practical method for repeated point-of-use decontamination, using commercially-available UV-C crosslinker boxes from molecular biology laboratories or a simple low-cost, custom-designed and fabricated device to expose each side of the mask to 800-1200 mJ/cm2 of UV-C. We measure the dose that penetrated to the interior of the respirators and model the potential germicidal action on SARS-CoV-2. Our experimental results, in combination with modeled data, suggest that a two-minute UV-C treatment cycle should induce a >3-log-order reduction in viral bioburden on the surface of the respirators, and a 2-log order reduction throughout the interior. The resulting exposure is 100-fold less than the dose expected to damage the masks, facilitating repeated decontamination. As such, UV-C germicidal irradiation (UVGI) is a practical strategy for small-scale point-of-use decontamination of N95s.
subject
  • Hygiene
  • Safety engineering
  • Ultraviolet radiation
  • 2019 disasters in China
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software