Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Forecasting Covid-19 dynamics in Brazil: a data driven approach
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
wasabi.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Forecasting Covid-19 dynamics in Brazil: a data driven approach
Creator
Distante, Cosimo
Garcia, Gabriel
Pereira, Igor
Gonçalves, M
Guerin, Joris
»more»
source
MedRxiv
abstract
This paper has a twofold contribution. The first is a data driven approach for predicting the Covid-19 pandemic dynamics, based on data from more advanced countries. The second is to report and discuss the results obtained with this approach for Brazilian states, as of May 4th, 2020. We start by presenting preliminary results obtained by training an LSTM-SAE network, which are somewhat disappointing. Then, our main approach consists in an initial clustering of the world regions for which data is available and where the pandemic is at an advanced stage, based on a set of manually engineered features representing a country's response to the early spread of the pandemic. A Modified Auto-Encoder network is then trained from these clusters and learns to predict future data for Brazilian states. These predictions are used to estimate important statistics about the disease, such as peaks. Finally, curve fitting is carried out on the predictions in order to find the distribution that best fits the outputs of the MAE, and to refine the estimates of the peaks of the pandemic. Results indicate that the pandemic is still growing in Brazil, with most states peaks of infection estimated between the 25th of April and the 19th of May 2020. Predicted numbers reach a total of 240 thousand infected Brazilians, distributed among the different states, with Sao Paulo leading with almost 65 thousand estimated, confirmed cases. The estimated end of the pandemics (with 97 % of cases reaching an outcome) starts as of May 28th for some states and rests through August 14th, 2020.
has issue date
2020-05-18
(
xsd:dateTime
)
bibo:doi
10.1101/2020.05.11.20098392
has license
medrxiv
sha1sum (hex)
d278f33fa4ca2f6ee76af1b92f9d9fd5554b5a80
schema:url
https://doi.org/10.1101/2020.05.11.20098392
resource representing a document's title
Forecasting Covid-19 dynamics in Brazil: a data driven approach
resource representing a document's body
covid:d278f33fa4ca2f6ee76af1b92f9d9fd5554b5a80#body_text
is
schema:about
of
named entity 'reach'
named entity 'Covid-19'
named entity 'COUNTRY'
named entity 'INFECTION'
named entity 'PANDEMIC'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 6
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software