About: The current coronavirus disease 2019 (COVID-19) pandemic is caused by the SARS-CoV-2 virus and is still spreading rapidly worldwide. Full-genome-sequence computational analysis of the SARS-CoV-2 genome will allow us to understand the recent evolutionary events and adaptability mechanisms more accurately, as there is still neither effective therapeutic nor prophylactic strategy. In this study, we used population genetics analysis to infer the mutation rate and plausible recombination events that may have contributed to the evolution of the SARS-CoV-2 virus. Furthermore, we localized targets of recent and strong positive selection. The genomic regions that appear to be under positive selection are largely co-localized with regions in which recombination from non-human hosts appeared to have taken place in the past. Our results suggest that the pangolin coronavirus genome may have contributed to the SARS-CoV-2 genome by recombination with the bat coronavirus genome. However, we find evidence for additional recombination events that involve coronavirus genomes from other hosts, i.e., Hedgehog and Sparrow. Even though recombination events within human hosts cannot be directly assessed, due to the high similarity of SARS-CoV-2 genomes, we infer that recombinations may have recently occurred within human hosts using a linkage disequilibrium analysis. In addition, we employed an Approximate Bayesian Computation approach to estimate the parameters of a demographic scenario involving an exponential growth of the size of the SARS-CoV-2 populations that have infected European, Asian and Northern American cohorts, and we demonstrated that a rapid exponential growth in population size can support the observed polymorphism patterns in SARS-CoV-2 genomes.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The current coronavirus disease 2019 (COVID-19) pandemic is caused by the SARS-CoV-2 virus and is still spreading rapidly worldwide. Full-genome-sequence computational analysis of the SARS-CoV-2 genome will allow us to understand the recent evolutionary events and adaptability mechanisms more accurately, as there is still neither effective therapeutic nor prophylactic strategy. In this study, we used population genetics analysis to infer the mutation rate and plausible recombination events that may have contributed to the evolution of the SARS-CoV-2 virus. Furthermore, we localized targets of recent and strong positive selection. The genomic regions that appear to be under positive selection are largely co-localized with regions in which recombination from non-human hosts appeared to have taken place in the past. Our results suggest that the pangolin coronavirus genome may have contributed to the SARS-CoV-2 genome by recombination with the bat coronavirus genome. However, we find evidence for additional recombination events that involve coronavirus genomes from other hosts, i.e., Hedgehog and Sparrow. Even though recombination events within human hosts cannot be directly assessed, due to the high similarity of SARS-CoV-2 genomes, we infer that recombinations may have recently occurred within human hosts using a linkage disequilibrium analysis. In addition, we employed an Approximate Bayesian Computation approach to estimate the parameters of a demographic scenario involving an exponential growth of the size of the SARS-CoV-2 populations that have infected European, Asian and Northern American cohorts, and we demonstrated that a rapid exponential growth in population size can support the observed polymorphism patterns in SARS-CoV-2 genomes.
Subject
  • Zoonoses
  • COVID-19
  • Exponentials
  • Rolling animals
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
  • Nocturnal animals
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software