About: Abstract Hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae. HAV has several unique biological characteristics that distinguish it from other members of this family. Recent and previous studies revealed that codon usage plays a key role in HAV replication and evolution. In this study, the patterns of synonymous codon usage in HAV have been studied through multivariate statistical methods on 30 complete open reading frames (ORFs) from the available 30 full-length HAV sequences. Effective number of codons (ENC) indicates that the overall extent of codon usage bias in HAV genomes is significant. The relative dinucleotide abundances suggest that codon usage in HAV can also be strongly influenced by underlying biases in dinucleotide frequencies. These factors strongly correlated with the first major axis of correspondence analysis (COA) on relative synonymous codon usage (RSCU). The distribution of the HAV ORFs along the plane defined by the first two major axes in COA showed that different genotypes are located at different places in the plane, suggesting that HAV codon usage is also reflecting an evolutionary process. It has been very recently described that fine-tuning translation kinetics selection also contributes to codon usage bias of HAV. The results of these studies suggest that HAV genomic biases are the result of the co-evolution of genome composition, controlled translation kinetics and probably the ability to escape the antiviral cell responses.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae. HAV has several unique biological characteristics that distinguish it from other members of this family. Recent and previous studies revealed that codon usage plays a key role in HAV replication and evolution. In this study, the patterns of synonymous codon usage in HAV have been studied through multivariate statistical methods on 30 complete open reading frames (ORFs) from the available 30 full-length HAV sequences. Effective number of codons (ENC) indicates that the overall extent of codon usage bias in HAV genomes is significant. The relative dinucleotide abundances suggest that codon usage in HAV can also be strongly influenced by underlying biases in dinucleotide frequencies. These factors strongly correlated with the first major axis of correspondence analysis (COA) on relative synonymous codon usage (RSCU). The distribution of the HAV ORFs along the plane defined by the first two major axes in COA showed that different genotypes are located at different places in the plane, suggesting that HAV codon usage is also reflecting an evolutionary process. It has been very recently described that fine-tuning translation kinetics selection also contributes to codon usage bias of HAV. The results of these studies suggest that HAV genomic biases are the result of the co-evolution of genome composition, controlled translation kinetics and probably the ability to escape the antiviral cell responses.
subject
  • Hepatitis
  • Genetics
  • Hepatitis A
  • Picornaviridae
  • Gene expression
  • »more»
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software