AttributesValues
type
value
  • Much of an interpolation engine for bit-vector (BV) arithmetic can be constructed by observing that BV arithmetic can be modeled with linear integer arithmetic (LIA). Two BV formulae can thus be translated into two LIA formulae and then an interpolation engine for LIA used to derive an interpolant, albeit one expressed in LIA. The construction is completed by back-translating the LIA interpolant into a BV formula whose models coincide with those of the LIA interpolant. This paper develops a back-translation algorithm showing, for the first time, how back-translation can be universally applied, whatever the LIA interpolant. This avoids the need for deriving a BV interpolant by bit-blasting the BV formulae, as a backup process when back-translation fails. The new back-translation process relies on a novel geometric technique, called gapping, the correctness and practicality of which are demonstrated.
Subject
  • Video
  • Algorithms
  • Arithmetic
  • Interpolation
  • Elementary mathematics
  • Mathematics education
  • Video signal
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software