About: Double-pass polarimetry measures the polarization properties of a sample over a range of polar angles and all azimuths. Here, we present a tolerance analysis of all the optical elements in both the calibration and measurement procedures to predict the sensitivities of the double-pass polarimeter. The calibration procedure is described by a Mueller matrix based on the eigenvalue calibration method (ECM). Our numerical results from the calibration and measurement in the Mueller matrix description with tolerances limited by systematic and stochastic noise from specifications of commercially available hardware components are in good agreement with previous experimental observations. Furthermore, by using the orientation Zernike polynomials (OZP) which are an extension of the Jones matrix formalism, similar to the Zernike polynomials wavefront expansion, the pupil distribution of the polarization properties of non-depolarizing samples under test are expanded. Using polar angles ranging up to 25$^{/circ}$, we predict a sensitivity of 0.5% for diattenuation and 0.3$^{/circ}$ for retardance using the root mean square (RMS) of the corresponding OZP coefficients as a measure of the error. This numerical tool provides an approach for further improving the sensitivities of polarimeters via error budgeting and replacing sensitive components with those having better precision.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Double-pass polarimetry measures the polarization properties of a sample over a range of polar angles and all azimuths. Here, we present a tolerance analysis of all the optical elements in both the calibration and measurement procedures to predict the sensitivities of the double-pass polarimeter. The calibration procedure is described by a Mueller matrix based on the eigenvalue calibration method (ECM). Our numerical results from the calibration and measurement in the Mueller matrix description with tolerances limited by systematic and stochastic noise from specifications of commercially available hardware components are in good agreement with previous experimental observations. Furthermore, by using the orientation Zernike polynomials (OZP) which are an extension of the Jones matrix formalism, similar to the Zernike polynomials wavefront expansion, the pupil distribution of the polarization properties of non-depolarizing samples under test are expanded. Using polar angles ranging up to 25$^{/circ}$, we predict a sensitivity of 0.5% for diattenuation and 0.3$^{/circ}$ for retardance using the root mean square (RMS) of the corresponding OZP coefficients as a measure of the error. This numerical tool provides an approach for further improving the sensitivities of polarimeters via error budgeting and replacing sensitive components with those having better precision.
Subject
  • Measurement
  • Standards
  • Digital electronics
  • Mathematical physics
  • Accuracy and precision
  • IFPI members
  • Metrology
  • Polarization (waves)
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software