About: Resilience enables supply chains to reduce their proneness to disruptions and recover faster. Many existing strategies to strengthen the resilience of supply chains are facilitated by the use of digital technology. Blockchain, as one of the promising innovative technologies, enables a transparent, secure, and timely data exchange and automation via smart contracts. In this paper, we discuss the impact of blockchain technology on supply chain risk management and, in particular, on supply chain resilience. We identify potential risk-related blockchain application scenarios and examine their impact on the existing resilience strategies. We explore the impact of the most promising applications with respect to resilience by using an agent-based simulation model of a complex supply network affected by disruptions. The theoretical analysis reveals a promotion of supply chain resilience strategies, especially if smart contracts are used for risk-related collaboration. The simulation study indicates an increase in resilience if the underlying collaboration is based on time-efficient processes: The propagation of disruptions, the network recovery time and total costs can be substantially reduced. However, depending on the duration of the disruption, negative effects can occur if process efficiency is insufficient. From our investigations, we derive insights for managers who are interested in practical implementation.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Resilience enables supply chains to reduce their proneness to disruptions and recover faster. Many existing strategies to strengthen the resilience of supply chains are facilitated by the use of digital technology. Blockchain, as one of the promising innovative technologies, enables a transparent, secure, and timely data exchange and automation via smart contracts. In this paper, we discuss the impact of blockchain technology on supply chain risk management and, in particular, on supply chain resilience. We identify potential risk-related blockchain application scenarios and examine their impact on the existing resilience strategies. We explore the impact of the most promising applications with respect to resilience by using an agent-based simulation model of a complex supply network affected by disruptions. The theoretical analysis reveals a promotion of supply chain resilience strategies, especially if smart contracts are used for risk-related collaboration. The simulation study indicates an increase in resilience if the underlying collaboration is based on time-efficient processes: The propagation of disruptions, the network recovery time and total costs can be substantially reduced. However, depending on the duration of the disruption, negative effects can occur if process efficiency is insufficient. From our investigations, we derive insights for managers who are interested in practical implementation.
subject
  • Methods in sociology
  • Supply chain management
  • Climate change mitigation
  • Cryptocurrencies
  • Blockchains
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software