AttributesValues
type
value
  • Learning from imbalanced datasets is a challenging task for standard classification algorithms. In general, there are two main approaches to solve the problem of imbalanced data: algorithm-level and data-level solutions. This paper deals with the second approach. In particular, this paper shows a new proposition for calculating the weighted score function to use in the integration phase of the multiple classification system. The presented research includes experimental evaluation over multiple, open-source, highly imbalanced datasets, presenting the results of comparing the proposed algorithm with three other approaches in the context of six performance measures. Comprehensive experimental results show that the proposed algorithm has better performance measures than the other ensemble methods for highly imbalanced datasets.
subject
  • Algorithms
  • Machine learning
  • Philosophy of science
  • Mathematical logic
  • Theoretical computer science
  • Philosophical movements
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software