About: Our ability to infer unobservable disease‐dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time‐averaged value and are based on population‐level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within‐host processes to FOI is needed. Specifically, within‐host antibody kinetics in wildlife hosts can be short‐lived and produce patterns that are repeatable across individuals, suggesting individual‐level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population‐level FOI signal can be recovered from individual‐level antibody kinetics, despite substantial individual‐level variation. In addition to improving inference, the cross‐scale quantitative antibody approach we describe can reveal insights into drivers of individual‐based variation in disease response, and the role of poorly understood processes such as secondary infections, in population‐level dynamics of disease.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Our ability to infer unobservable disease‐dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time‐averaged value and are based on population‐level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within‐host processes to FOI is needed. Specifically, within‐host antibody kinetics in wildlife hosts can be short‐lived and produce patterns that are repeatable across individuals, suggesting individual‐level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population‐level FOI signal can be recovered from individual‐level antibody kinetics, despite substantial individual‐level variation. In addition to improving inference, the cross‐scale quantitative antibody approach we describe can reveal insights into drivers of individual‐based variation in disease response, and the role of poorly understood processes such as secondary infections, in population‐level dynamics of disease.
Subject
  • Epidemiology
  • Infectious diseases
  • Markov chain Monte Carlo
  • Moment (mathematics)
  • Monte Carlo methods
  • Programming languages
  • Programming language classification
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software