Facets (new session)
Description
Metadata
Settings
owl:sameAs
Inference Rule:
b3s
b3sifp
dbprdf-label
facets
http://dbpedia.org/resource/inference/rules/dbpedia#
http://dbpedia.org/resource/inference/rules/opencyc#
http://dbpedia.org/resource/inference/rules/umbel#
http://dbpedia.org/resource/inference/rules/yago#
http://dbpedia.org/schema/property_rules#
http://www.ontologyportal.org/inference/rules/SUMO#
http://www.ontologyportal.org/inference/rules/WordNet#
http://www.w3.org/2002/07/owl#
ldp
oplweb
skos-trans
virtrdf-label
None
About:
Modeling the Effective Control Strategy for Transmission Dynamics of Global Pandemic COVID-19
Goto
Sponge
NotDistinct
Permalink
An Entity of Type :
schema:ScholarlyArticle
, within Data Space :
wasabi.inria.fr
associated with source
document(s)
Type:
Academic Article
research paper
schema:ScholarlyArticle
New Facet based on Instances of this Class
Attributes
Values
type
Academic Article
research paper
schema:ScholarlyArticle
isDefinedBy
Covid-on-the-Web dataset
title
Modeling the Effective Control Strategy for Transmission Dynamics of Global Pandemic COVID-19
Creator
Islam, M
Paul, A
Biswas, M
Ghosh, U
Khatun,
»more»
source
MedRxiv
abstract
The novel coronavirus disease (namely COVID-19) has taken attention because of its deadliness across the globe, causing a massive death as well as critical situation around the world. It is an infectious disease which is caused by newly discovered coronavirus. Our study demonstrates with a nonlinear model of this devastating COVID-19 which narrates transmission from human-to-human in the society. Pontryagin Maximum principle has also been applied in order to obtain optimal control strategies where the maintenance of social distancing is the major control. The target of this study is to find out the most fruitful control measures of averting coronavirus infection and eventually, curtailed of the COVID-19 transmission among people. The model is investigated analytically by using most familiar necessary conditions of Pontryagin maximum principle. Furthermore, numerical simulations have been performed to illustrate the analytical results. The analysis reveals that implementation of educational campaign, social distancing and developing human immune system are the major factors which can be able to plunge the scenario of becoming infected.
has issue date
2020-04-23
(
xsd:dateTime
)
bibo:doi
10.1101/2020.04.22.20076158
has license
medrxiv
sha1sum (hex)
db65b72abb50b1ce8ab176ab4e68e2bf3428047a
schema:url
https://doi.org/10.1101/2020.04.22.20076158
resource representing a document's title
Modeling the Effective Control Strategy for Transmission Dynamics of Global Pandemic COVID-19
resource representing a document's body
covid:db65b72abb50b1ce8ab176ab4e68e2bf3428047a#body_text
is
schema:about
of
named entity 'PEOPLE'
named entity 'OUR'
named entity 'STUDY'
named entity 'human-to-human'
named entity 'critical situation'
»more»
◂◂ First
◂ Prev
Next ▸
Last ▸▸
Page 1 of 4
Go
Faceted Search & Find service v1.13.91 as of Mar 24 2020
Alternative Linked Data Documents:
Sponger
|
ODE
Content Formats:
RDF
ODATA
Microdata
About
OpenLink Virtuoso
version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software